Genetic Coagulation Defects

  • Ewa Marciniak


Normal hemostasis in response to blood vessel injury results from sequential activation of coagulation enzymes and culminates in formation of a stabilized fibrin clot. Complex natural mechanisms are known to exist for deterring this process. The principal components that suppress intravascular clotting thereby ensuring unobstructed blood flow are the coagulation inhibitors and the fibrinolytic system. When defects of these components occur the disrupted balanced between procoagulant and anticoagulant activities in blood may lead to thrombosis.


Venous Thromboembolism Thrombotic Disease Purpura Fulminans Coagulation Inhibitor Duffy Blood Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Harpel, and R. D. Rosenberg, Alpha-2 macroglobulin and antithrombin-heparin cofactor: Modulators of hemostatic and inflammatory reactions, Prog.Hemostsis Thromb., 3:145 (1976).Google Scholar
  2. 2.
    S. Wessler, and S. N. Gitel, Warfarin from bedside to bench, N. Engl. J. Med., 311:645 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    I. Bjork, C. M. Jackson, H. Jornvall, K. K. Lavine, K. Nordling and W. S. Salsgiver, The active site of antithrombin, J. Biol. Chem., 257:2406 (1982).PubMedGoogle Scholar
  4. 4.
    J. Jesty, The kinetics of formation and dissociation of the bovine thrombin-antithrombin III complex, J. Biol. Chem., 254:10044 (1979).PubMedGoogle Scholar
  5. 5.
    W. W. Fish, K. Orre, and I. Bjork, The production of an inactive form of antithrombin through limited proteolysis by thrombin, FEBS Letters, 98:103 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Marciniak, Thrombin-induced proteolysis of human antithrombin III: an outstanding contribution of heparin, Brit. J. Haematol., 48:325 (1981).Google Scholar
  7. 7.
    W. H. Howell, The Condition of the blood in hemophilia, thrombosis and purpura, Arch. Intern. Med., 13:76 (1914).CrossRefGoogle Scholar
  8. 8.
    O. Egeberg, Inherited antithrombin deficiency causing thrombophilia, Thromb. Diath. Haemorrh., 13:516 (1965).PubMedGoogle Scholar
  9. 9.
    E. Marciniak, C. H. Farley, and P. A. DeSimone, Familial thrombosis due to antithrombin III deficiency, Blood, 43:219 (1974).PubMedGoogle Scholar
  10. 10.
    D. J. Filip, J. D. Eckstein, and J. J. Veltkamp, Hereditary antithrombin III deficiency and thromboembolic disease, Am.J.Hematol., 2:343 (1976).CrossRefGoogle Scholar
  11. 11.
    J. van der Meer, E. A. Stoepman-van Dalen, and J. M. S. Jansen, Antithrombin-III deficiency in a Dutch family, J.Clin.Pathol., 6:532 (1973).CrossRefGoogle Scholar
  12. 12.
    M. Mackie, B. Bennett, D. Ogston, and A. S. Douglas, Familial thrombosis: Inherited deficiency of antithrombin III, Br.Med.J., 1:136 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    W. R. Pitney, A. Manoharan, and S. Dean, Antithrombin III deficiency in an Australian family, Br. J. Haematol., 46:147 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    T. M. Cosgriff, D. T. Bishop, E. J. Hershgold, M. H. Skolnick, B. A. Martin, B. J. Baty, and K. S. Carlson, Familial antithrombin III deficiency: Its natural history, genetics-, diagnosis and treatment, Medicine, 62:209 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    D. R. Ambruso, B. D. Leonard, R. D. Bies, L. Jacobson, W. E. Hathaway, and E. B. Reeve, Antithrombin III deficiency: Decreased synthesis of a biochemically normal molecule, Blood, 60:78 (1982).PubMedGoogle Scholar
  16. 16.
    E. W. Lovrien, R. E. Magenis, M. L. Rivas, S. Goodnight, R. Moreland, and S. Rowe, Linkage study of antithrombin III, Cytogenet.Cell.Genet., 22:319 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Winter, B. Bennett, J. Watt, T. Brown, C. San Roman, A. Schinzel, J. King, and P. Cook, Confirmation of linkage between antithrombin III and Duffy blood group and assignment of AT 3 to 1q22–q25, Ann.Hum.Genet., 46:29 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    F. T. Kao, H. G. Morse, M. L. Law, A. Lidsky, T. Chandra, and S. L. C. Wood, Genetic mapping of the of the structural gene for antithrombin III to human chromosone 1, Hum.Genet. 67:34 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    E. V. Prochownik, S. Antonarakis, K. A. Bauer, R. D. Rosenberg, E. R. Fearon, and S. H. Orkin, Molecular heterogeneity of inherited antithrombin III deficiency, N.Eng.J.Med., 308:1549 (1983).CrossRefGoogle Scholar
  20. 20.
    S. C. Bock, J. F. Harris, C. E. Schwartz, J. H. Ward, E. J. Hershgold, and M. H. Skolnick, Hereditary thrombosis in a Utah kindred is caused by a dysfunctional antithrombin III gene, Am.J.Genet., 37:32 (1985).Google Scholar
  21. 21.
    O. R. Odegard, M. K. Fagerhol, and M. Lie, Heparin cofactor activity and antithrombin III concentration in plasma related to age and sex, Scand.J.Haematol., 17:258 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Vikydal, C. Korninger, P. A. Kyrie, H. Niessner, I. Pabinger, E. Thaler, and K. Lechner, The prevalence of hereditary antithrombin III deficiency in patients with history of venous thromboembolism, Thrombos, Haemostas., 54:744 (1985).Google Scholar
  23. 23.
    J. Y. Chang, and T. H. Tran, Antithrombin III Basel: identification of a proleu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity, J. Biol. Chem., 261:1174 (1986).PubMedGoogle Scholar
  24. 24.
    T. Koide, S. Odani, K. Takahasi, T. Ono, and H. Sakuragawa, Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability, Proc.Natl.Acad.Sci.USA, 81:289 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Sas, D. Blasko, D. Banhegyi, J. Jako, and L. A. Palos, Abnormal antithrombin III (antithrombin III “Budapest”) as a cause of a familial thrombophilia, Thromb.Diath.Haemorrh., 32:105 (1974).PubMedGoogle Scholar
  26. 26.
    J. A. Penner, H. Hassouna, M. J. Hunter, and M. Chockley, A clinically silent antithrombin III defect in an Ann Arbor family, Thromb.Haemostasis, 42:186 (1979).Google Scholar
  27. 27.
    M. Wolf, C. Boyer, J. M. Lavergne, and M. J. Larrieu, A new familial variant of antithrombin III: antithrombin III Paris, Br.J.Haematol., 51:285 (1982).PubMedGoogle Scholar
  28. 28.
    T. H. Tran, H. Bounameaux, C. Bondeli, T. H. Tran, H. Bounameaux, C. Bondeli, H. Honkanen, G. A. Marbet, and F. Duckert, Purification and partial characterization of a hereditary abnormal antithrombin III fraction of a patient with recurrent thrombophlebitis, Thrombos. Haemostas., 44:87 (1980).Google Scholar
  29. 29.
    N. Sakuragawa, K. Takahashi, S. Kondo, and T. Koide, Antithrombin III Toyama: a hereditary abnormal antithrombin III of a patient with recurrent thrombophlebitis, Thromb.Res., 31:305 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Lollar, and W. G. Owen, Clearance of thrombin from circulation in rabbits by high-affinity binding sites on endothelium, J. Clin. Invest., 66:1222 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    R. D. Rosenberg, and J. S. Rosenberg, Natural anticoagulant mechanism, J. Clin. Invest., 74:1 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Girolami, F. Fabris, G. Cappellato, L. Sainati, and G. Boeri, Antithrombin III (AT III) Padua2: a new congenital abnormality with defective heparin-co-factor activities but no thrombotic disease, Blut, 46:1 (1983).CrossRefGoogle Scholar
  33. 33.
    T. Barbui, G. Finazzi, F. Rodeghiero, and E. Dini, Immunoelectrophoretic evidence of a thrombin induced abnormality in a new variant of hereditary dysfunctional antithrombin III (At III Vicenza), Br.J.Haemat., 54:116 (1983).CrossRefGoogle Scholar
  34. 34.
    P. J. Sorensen, G. Sas, I. Peto, Gy Blasko, T. Kremmer, A. Samu, Distinction of two pathologic antithrombin III molecules: Antithrombin III “Aalborg” and antithrombin III “Budapest”, Thromb.Res., 26:211 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    M. L. Jorgensen, C. Petersen, and S. Thorsen, Purification and characterization of hereditary abnormal antithrombin III with impaired thrombin binding, J. Lab. Clin. Med., 104:245 (1984).PubMedGoogle Scholar
  36. 36.
    A. Girolami, F. Marafioti, M. Rubertelli, M. A. Vicarioto, G. Cappellato, and M. Mazzuccato, Antithrombin III Trento. A “new” cogenital AT-III abnormality with a peculiar crossed immunoelectrophoretic pattern in the absence of heparin, Acta.Haematol., 72:73 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    K. A. Bauer, J. B. Ashenhurst, J. Chediak, and R. D. Rosenberg, Antithrombin “Chicago”: a functionally abnormal molecule with increased heparin affinity causing familial thrombophilia, Blood, 62:1242 (1983).PubMedGoogle Scholar
  38. 38.
    M. Wolf, C. Boyer, A. Tripodi, D. Meyer, M. J. Larieu, and P. Mannucci, Antithrombin Milano: a new variant with monomeric and dimeric inactive antithrombin III, Blood, 65:496 (1985).PubMedGoogle Scholar
  39. 39.
    J. E. Sambrano, L. J. Jacobson, E. B. Reeve, M. J. Manco-Johnson, and W. E. Hathaway, Abnormal antithrombin III with defective serine protease binding (antithrombin III Denver), J. Clin. Invest., 77:887 (1986).PubMedCrossRefGoogle Scholar
  40. 40.
    S. Wessler, S. N. Gitel, H. Bank, U. Martinowitz, and R. C. Stephenson, An assay of the antithrombotic action of warfarin: its correlation with the inhibition of stasis thrombosis in rabbits, Thromb. Haemost., 40:486 (1976).Google Scholar
  41. 41.
    D. Collen, J. Schetz, De Cock F., E. Holmer, M. Verstraete, Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and heparin administration, Eur. J. Clin. Invest., 7:27 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    E. Marciniak, and J. P. Gockerman, Heparin-induced decrease in circulating antithrombin III, Lancet, 2:581 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Hellgren, L. Tengborn, and U. Abildgaard, Pegnancy in women with cogenital antithrombin III deficiency: experience of treatment with heparin and antithrombin, Gynecol.Obstet.Invest., 14:127 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    T. H. Carlson, A. C. Atencio, and T. L. Simon, In vivo behavior of radioiodinated rabbit antithrombin III. Demonstration of a noncirculating vascular compartment, J.Clin.Invest., 74:191 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    E. Marciniak, Differential role of fractionated heparin in antithrombin III proteolysis, Blood, 59:576 (1982).PubMedGoogle Scholar
  46. 46.
    E. Marciniak, and E. H. Romond, Catabolism and distribution of functionally heterogenous human antithrombin III, J. Lab. Clin. Med., (in press).Google Scholar
  47. 47.
    N. Miller, M. B. Hultin, M. Gounder, and M. H. Zarrabi, Hereditary antithrombin III deficiency: case report and review of recent therapeutic advances, Am.J.Hematol., 21:215 (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    J. Stenflo, A new vitamin K-dependent protein: purification from bovine plasma and preliminary characterization, J.Biol.Chem., 251:355 (1976).PubMedGoogle Scholar
  49. 49.
    W. Kisiel, Human plasma protein C.: isolation, characterization, and mechanism of activation by α-thrombin, J. Clin. Invest., 64:761 (1979).PubMedCrossRefGoogle Scholar
  50. 50.
    E. Marciniak, G. Murano, and W. H. Seegers, Inhibitor of blood clotting derived from prothrombin, Thromb. Diath. Haemorrh., 18:161 (1967).PubMedGoogle Scholar
  51. 51.
    C. T. Esmon, and W. G. Owen, Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C., Proc.Natl.Acad.Sci.USA, 78:2249 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    F. J. Walker, P. W. Sexton, and C. T. Esmon, The inhibition of blood coagulation by activated protein C through the selective inactivation of activated factor V, Biochim. Biophys. Acta., 571:333 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    B. Dahlback, and J. Stenflo, Inhibitory effect of activated protein C on activation of prothrombin by platelet-bound factor X, Eur.J.Biochem., 107:331 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    J. P. Miletich, C. M. Jackson, and P. W. Majerus, Properties of the factor X, binding site on human platelets, J. Biol. Chem., 253:6908 (1977).Google Scholar
  55. 55.
    P. B. Tracy, M. E. Nesheim, and K. G. Mann, Proteolytic alterations o f factor Va bound to platelets, J. Biol. Chem., 258:662 (1983).PubMedGoogle Scholar
  56. 56.
    C. A. Fulcher, J. E. Gardiner, J. H. Griffin, and T. S. Zimmerman, Proteolytic inactivation of human factor VIII procoagulant protein by activated human protein C and its analogy with factor V, Blood, 63:486 (1984).PubMedGoogle Scholar
  57. 57.
    P. C. Comp, and C. T. Esmon, Generation of fibrinolytic activity by infusion of activated protein C into dogs, J. Clin. Invest., 68:1221 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    J. H. Griffin, B. Evatt, T. S. Zimmerman, A. J. Kleiss, and C. Widerman, Deficiency of protein C in cogenital thrombotic disease, J.Clin.Invest., 68:1370 (1981).PubMedCrossRefGoogle Scholar
  59. 59.
    H. E. Branson, J. Katz, R. Marble, and J. H. Griffin, Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant, Lancet 2:1165 (1983).PubMedCrossRefGoogle Scholar
  60. 60.
    E. Marciniak, H. D. Wilson, and R. A. Marlar, Neonatal purpura fulminans: a genetic disorder related to the absence of protein C in blood, Blood 65:15 (1985).PubMedGoogle Scholar
  61. 61.
    U. Seligsohn, A. Berger, M. Abend, L. Rubin, D. Attias, A. Zivelin, and S. I. Rapaport, Homozygous protein C deficiency manifested by massive venous thrombosis in the newborn, N. Engl. J. Med., 310:559 (1984).PubMedCrossRefGoogle Scholar
  62. 62.
    R. H. Sills, R. A. Marlar, R. R. Montgomery, G. N. Deshpande, and J. R. Humbert, Severe homozygous protein C deficiency, J. Pediatr., 105:409 (1984).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Estelles, I. Garcia-Plaza, A. Dasi, J. Aznar, M. Duart, G. Sanz, J. L. Perez-Requejo, F. Espana, C. Jimenez, and G. Abeledo, Severe inherited “homozygous” protein C deficiency in a newborn infant, Thromb. Haemostas., 52:53 (1984).Google Scholar
  64. 64.
    P. Yuen, A. Cheung, H. Ju Lin, F. Ho, J. Mimuro, N. Yoshida, and N. Aoki, Purpura fulminans in a Chinese boy with congenital protein C deficiency, Pediatrics, 77:670 (1986).PubMedGoogle Scholar
  65. 65.
    A. R. Wintzen, A. W. Broekmans, R. M. Bertina, E. Briet, P. E. Briet, A. Zecha, G. J. Vielvoye, and G. Th. Bots, Cerebral haemorrhagic infarction in young patients with hereditary proteinc C deficiency: evidence for “spontaneous” venous thrombosis, Br. Med. J., 290:350 (1985).CrossRefGoogle Scholar
  66. 66.
    I. Pabinger-Faschings, R. M. Bertina, K. Lechner, H. Niessner, and Ch. Korninger, Protein C deficiency in two Austrian families, Thromb.Haemostas., 50:810 (1983).Google Scholar
  67. 67.
    M. H. Horellou, J. Conard, R. M. Berina, and M. Samama, Congenital protein C deficiency and thrombotic disease in nine French families, Br. Med. J., 289:1285 (1984).CrossRefGoogle Scholar
  68. 68.
    Report of the Subcommittee on Protein C, Xth International Congress on Thrombosis and Haemostasis, 1985.Google Scholar
  69. 69.
    W. G. McGehee, T. A. Klotz, D. J. Epstein, S. I. Rapaport, Coumarin necrosis associated with hereditary protein C deficiency, Ann.Intern.Med., 101:59 (1984).PubMedCrossRefGoogle Scholar
  70. 70.
    P. C. Comp, R. R. Nixon, and C. T. Esmon, Determination of functional levels of protein C, an antithrombotic protein, using thrombin-thrombomodulin complex, Blood, 63:15 (1984).PubMedGoogle Scholar
  71. 71.
    T. Barbui, G. Finazzi, L. Mussoni, M. Riganti, M. B. Donati, M. Colucci, and D. Collen, Hereditary dysfunctional protein C (protein C Bergamo) and thrombosis, Lancet, 2:819 (1984).PubMedCrossRefGoogle Scholar
  72. 72.
    A. W. Broekmans, R. M. Bertina, E. A. Loelinger, V. Hofmann, and H. G. Klingemann, Protein C and the development of skin necrosis during anticoagulant therapy, Thromb. Haemost., 49:251 (1983).PubMedGoogle Scholar
  73. 73.
    E. Marciniak, Inactivation of factor V in clotted plasma as a function of protein C content and activation, Thromb.Haemostas., 54:84 (1985).Google Scholar
  74. 74.
    E. Marciniak, and M. C. Hermansen, Factor V utilization during clotting observations made in a case of homozygous protein C deficiency and in warfarin treated patients, (manuscript in preChapaution).Google Scholar
  75. 75.
    F. J. Walker, Regulation of activated protein C by a new protein: a possible function for bovine protein S, J. Biol. Chem., 255:5521 (1980).PubMedGoogle Scholar
  76. 76.
    H. P. Schwarz, M. Fischer, P. Hopmeier, M. A. Batard, and J. H. Griffin Plasma protein S deficiency in familial thrombotic disease, Blood, 64:1297 (1984).PubMedGoogle Scholar
  77. 77.
    P. C. Comp, and C. T. Esmon, Recurrent venous thromboembolism in patients with a partial deficiency of protein S, N.Engl.J.Med., 311:1525 (1984).PubMedCrossRefGoogle Scholar
  78. 78.
    P. C. Comp, R. R. Nixon, M. R. Cooper, and C. T. Esmon, Familial protein S deficiency is associated with recurrent thrombosis, J.Clin.Invest., 74:2082 (1984).PubMedCrossRefGoogle Scholar
  79. 79.
    A. W. Broekmans, R. M. Bertina, J. Reinalda-Poot, L. Engesser, H. P. Muller, J. A. Leeuw, J. J. Michiels, E. J. P. Brommer, and E. Briet, Hereditary protein S deficiency and venous thromboembolism. A study in three Dutch families, Thromb.Haemostas., 52:273 (1985).Google Scholar
  80. 80.
    B. Dahlback, and J. Stenflo, High molecular weight complex in human plasma between vitamin K-dependent protein S and complement component C4b-binding protein, Proc.Natl.Acad.Sci.USA, 78:2512 (1981).PubMedCrossRefGoogle Scholar
  81. 81.
    P. C. Comp, J. P. Miletich, and R. A. Marlar, The protein C pathway and thrombosis, Hematology 1985. Educational Program American Society of Hematology, New Orleans (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Ewa Marciniak
    • 1
  1. 1.Department of MedicineUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations