Manganese Oxidation by Spores of the Marine Bacillus sp. Strain SG-1

Application for the Bioremediation of Metal Pollution
  • Bradley M. Tebo
  • Lorraine G. van Waasbergen
  • Chris A. Francis
  • Liming M. He
  • Deeanne B. Edwards
  • Karen Casciotti
Chapter

Abstract

Microbial oxidation of soluble Mn(II) and the subsequent precipitation of insoluble Mn(III) and (IV) oxides and oxyhydroxides are key controls on Mn cycling in natural waters and are primary sources of these reactive solid phases in natural environments. Mn oxides often have high surface-area tunneled or layered structures, high sorptive capacities for metal ions, and are strong oxidants capable of non-specifically oxidizing a number of toxic aromatic and other organic compounds, as well as inorganic compounds such as reduced metals, hydrogen peroxide, and hydrogen sulfide. Thus, Mn(II)-oxidizing bacteria indirectly catalyze a variety of different reactions and impact the biogeochemical cycling of many elements. These bacteria may have useful biotechnological applications for metal recovery or the bioremediation of metal pollution.

Keywords

Metal Removal Manganese Oxidation Microbial Oxidation Multicopper Oxidase Spore Coat Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corstjens, P.L.A.M., et al., 1997, Geonticrobiology Journal, 14: 91–108CrossRefGoogle Scholar
  2. Hastings, D. and S. Emerson, 1986, Geochimica et Cosmochimica Acta, 50: 1819–1824.CrossRefGoogle Scholar
  3. He, L.M. and B.M. Tebo, Surface characterization of and Cu(II) adsorption by spores of a marine Bacillus. Applied and Environmental Microbiology, submitted.Google Scholar
  4. Lee, Y. and B.M. Tebo,1994, Applied and Environmental Microbiology, 60: 2949–2957Google Scholar
  5. Mandernack, K.W., J. Post, and B.M. Tebo, 1995, Geochimica et Cosmochimica Acta, 59 (21): 4393–4408.CrossRefGoogle Scholar
  6. Nealson, K.H. and J. Ford, 1980, Geomicrohiology Journal,. 2: 21–37.Google Scholar
  7. Nealson, K.H. and B. Tebo, 1980, Origins of Life, 10: 117–126.CrossRefGoogle Scholar
  8. Rosson, R.A. and K.H. Nealson, 1982, Journal of Bacteriology, 151: 1027–1034.PubMedGoogle Scholar
  9. Tebo, B.M., 1983, The ecology and ultrastructure of marine manganese oxidizing bacteria,. University of California, San Diego, p. 220.Google Scholar
  10. Tebo, B.M. and Y. Lee, 1993, Microbial oxidation of cobalt, in Biohydrometallurgical Technologies, A.E. Torma, J.E. Wey, and V.L. Lakshmanan, Editors. The Minerals, Metals, & Materials Society: Warrendale, PA. p. 695–704.Google Scholar
  11. Tebo, B.M., et al., 1997, Reviews in Mineralogy, 35: 225–266.Google Scholar
  12. de Vrind, J.P.M., et aí.,1986. Applied and Environmental Microbiology, 52: 1096–1100.Google Scholar
  13. van Waasbergen, L.G., J.A. Hoch, and B.M. Tebo, 1993, Journal of Bacteriology, 175 (23): 7594–7603.PubMedGoogle Scholar
  14. van Waasbergen, L.G., M. Hildebrand, and B.M. Tebo, 1996, Journal of Bacteriology, 178 (12): 3517–3530.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Bradley M. Tebo
    • 1
  • Lorraine G. van Waasbergen
    • 1
  • Chris A. Francis
    • 1
  • Liming M. He
    • 1
  • Deeanne B. Edwards
    • 1
  • Karen Casciotti
    • 1
  1. 1.Marine Biology Research Division and Center for Marine Biotechnology and Biomedicine Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations