Evidence for Cholecystokinin Receptor and Intracellular Signal Transduction in Relation to Amylase Secretion

  • Hiro-o Kamiya
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)

Abstract

Cholecystokinin (CCK) was first isolated from porcine intestine as a polypeptide with 33 amino acid residues (CCK-33) (1). Studies using radioimmunoassay techniques in combination with column chromatography have shown that CCK is present in different molecular forms in the intestine (2, 3) and the brain (3 – 5). The major form of CCK, CCK-8, carries all the known biological activities of CCK-33 and is considered as a putative neurotransmitter or neuromodulator in the central nervous system. The exact role of CCK-8 in the brain is unknown, but has been suggested to be modulation of activity of catecholaminergic neurons in the mesolimbic system (6 – 8).

Keywords

Cerebral Cortex Pancreatic Acinar Cell Scatchard Analysis Pancreatic Acinus Amylase Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Mutt and J.E. Jorpes, Hormonal polypeptides of the upper intestine, Biochem. J. 125: 57 (1971).Google Scholar
  2. 2.
    G.J. Dockray, Immunoreactive component resembling cholecystokinin octapeptide in intestine, Nature, 270: 359 (1977).Google Scholar
  3. 3.
    J.F. Rehfeld, Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog, J. Biol. Chem. 253: 4022 (1978).Google Scholar
  4. 4.
    J. Eng, Y.Shiina, Y.C. E. Pan, R. Blacher, M. Stein and R.S. Yalow, Pig Brain contains cholecystokinin octapeptide and several cholecystokinin desoctapeptides, Proc. Natl. Acad. Sci. USA, 80: 6381 (1983).Google Scholar
  5. 5.
    P.D. Marley, and J.F. Rehfeld, Extraction techniques for gastins and cholecystokinins in the rat central nervous system, J. Neurochem. 42: 1515 (1984).CrossRefGoogle Scholar
  6. 6.
    T. Hokfelt, J.F. Rehfeld, L. Skirboll, B. Iverark, M. Goldstein and K. Mrkey, Evidence for coexistence of dopamine and CCK in mesolimbic neurons, Nature, 285: 476 (1980).CrossRefGoogle Scholar
  7. 7.
    Y. Takeda, Y. Kamiya, K. Honda, Y. Takano and H. Kamiya, Effect of injection of CCK-8 into the nucleus caudatus on the behavior of rats, Japan. J. Pharmacol. 40: 569 (1986).Google Scholar
  8. 8.
    Y. Takeda, Y. Takano and H. Kamiya, Effects of cholecystokinin tetra and octa peptides on locomotor activity in mice, Japan. J. Pharmacol., 42: 145 (1986)Google Scholar
  9. 9.
    R.B. Innis and S.H. Snyder, Distinct cholecystokinin receptors in brain and pancreas, Proc. Natl. Acad. Sci. USA, 77: 6917 (1980)CrossRefGoogle Scholar
  10. 10.
    R.T. Jensen, G.F. Lemp and J.D. Gardner, Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells, Proc. Natl. Acad. Sci. USA 77: 2079 (1980).CrossRefGoogle Scholar
  11. 11.
    C. Yanaihara, N. Sugiura, K. Kashimoto, M. Kondo, M. Kawamura, S. Naruse, A. Yasui and N. Yanaihara, Dissociation of pancreozymin (PZ) activity from cholecystokinin (CCK) activity by Na-carboxyacyl CCK-7 and CCK-8 analogues with a substituted glycine. Biomed. Res., 6: 111 (1985).Google Scholar
  12. 12.
    J.D. Gardner, Regulation of pancreatic exocrine function in vivo. Initial steps in the action of secretagogues, Annu. Rev. Physiol., 41: 55 (1979).CrossRefGoogle Scholar
  13. 13.
    S.J. Pandol, H. Seifert, M.W. Thomas, J. Rivier and W. Vale, Growth hormone-releasing factor stimulates pancreatic enzyme secretion, Science, 225: 326 (1984).CrossRefGoogle Scholar
  14. 14.
    J.A. Williams, P. Cray and B. Moffat, Effects of ions on amylase release by dissociated pancreatic acinar cells, J. Biol. Chem. 231: 1562 (1976).Google Scholar
  15. 15.
    A. Saito, I.D. Goldfine and J.A. Williams, Characterization of receptors for cholecystokinin and related peptides in mouse cerebral cortex, J. Neurochem., 37: 483 (1981).CrossRefGoogle Scholar
  16. 16.
    N. Savion and Z. Selinger, Morphological changes in rat pancreatic slices associated with incubation of enzyme secretion by high concentrations of secretagogues, J. Cell. Biol., 76: 467 (1978).CrossRefGoogle Scholar
  17. 17.
    mammalian tissues and body fluids, J.Biol.Chem., 247: 1114 (1972).Google Scholar
  18. 18.
    M. Honma, T. Satoh, J. Takezawa and M. Ui, An ultrasensitive method for the stimultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue, Biochemical Medicine, 18: 257 (1977).CrossRefGoogle Scholar
  19. 19.
    M.J. Berridge, C.P. Downes and M.R. Hanley, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J., 206: 587 (1982).Google Scholar
  20. 20.
    E.A. Bone, P. Fretten, S. Palmer, C.T. Kirk and R.H. Mitchell, Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1- vasopressin and muscarinic cholinergic stimuli, Biochem. J., 221: 803 (1984).Google Scholar
  21. 21.
    M.J. Berridge, R.M.C. Dawson, C.P. Downes, J.P Heslop and R.F. Irvine, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J., 212: 473 (1983).Google Scholar
  22. 22.
    A. Van Dijk, J.G. Richards, A. Trzeciak, D. Gillessen and H. Mohler, Cholecystokinin receptors:Biochemical demonstration and autoradiographical locarization in rat brain and pancreas using [H]cholecystokinin 8 as radioligand. J. Neurosci., 4: 1 021 (1984)Google Scholar
  23. 23.
    Lin, C.W. and Miller, T. (1985) Characterization of cholecystokininçeptor sites in guinea-pig cortical membranes using [I]Bolton Hunter-cholecystokinin octa- peptide. J. Pharmacol. Exp. Ther. 232, 775–780Google Scholar
  24. 24.
    Sakamoto, C., Williams, J.A. and Goldfine, I.D. (1984) Brain CCK receptors are structurally distinct from pancreas CCK receptors. Biochem. Biophys. Res. Commun. 124, 497–502Google Scholar
  25. 25.
    S.R. Peikin, C.L. Costenbader and J.D. Gardner, Action of derivatives of cyclic nucleotides on dispersed acini from guinea pig pancreas: discovery of competitive antagonist of the action of cholecystokinin, J. Biol. Chem., 254: 5321 (1979).Google Scholar
  26. 26.
    J.P. Christphe, E.K. Frandsen, T.P. Conlon, G. Krishna and J.D. Gardner, Action of cholecystokinin, cholinergic agents and A-23187 on accumulation of guanosine 3’,5’monophosphate in dispersed guinea pig pancreatic acinar cells, J. Biol. Chem., 251: 4640 (1976).Google Scholar
  27. 27.
    C.P. Downes and R.H. Michell, The polyphosphoinositide phospho-diesterase of erythrocyte membranes, Biochem. J., 198: 133 (1981).Google Scholar
  28. 28.
    G.J. Mazzei, N. Katoh and J.F. Kuo, Polymyxin B is a more selective inhibitor for phospholipid-sensitive Ca +- dependent protein kinase than for calmodulin-sensitive Ca +-dependent kinase, Biochem. Biophy. Res. Commun., 109: 1129 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Hiro-o Kamiya
    • 1
  1. 1.Department of Pharmacology, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan

Personalised recommendations