Localization of the Glycine Receptors in the Rat Central Nervous System: An Immunocytochemical Analysis

  • T. Murakami
  • T. Araki
  • M. Yamano
  • A. Wanaka
  • H. Betz
  • M. Tohyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


Glycine is a major inhibitory neurotransmitter in the central nervous system. The binding of this amino acid to the postsysnaptic glycine receptor produces an inhibitory effect and_This effect of glycine is antagonized by the alkaloid strychnine1–14. Localization of glycine in the nervous system has been eIamined autofgdblgraphically exploiting the high affinity uptake of (3H)-glycine 15–17 and more recently immunocytochemically by using antiserum against conjugated glycine18,19. On the other hand, the binding site of glycine to its receptor has been studied by autoradiography using (3H)-glycine20,21 or (3H)-strychnine21,22. However, the binding sites labeled by these radioisotopes might include non-receptor sites because of non-specific uptake of the ligands. Recently, glycine receptors have been solubilized and purified by affinity chromatography on aminostrychnine agarose. In addition, monoclonal antibodies against this receptor4,5,23 were produced. This made it possible to visualize the glycine receptor in the nervous system immunocytochemically; As a result, glycine receptors were observed in the motor neurons in the anterior horn of the spinal cord and cochlear nucleus24,25. However, the precise cellular and subcellular localization of glycine receptors in the central nervous system has not been reported.


Purkinje Cell Frontal Plane Reticular Formation Cochlear Nucleus Cerebellar Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Aprison, E. C. Daly, R. P. Shank and W. J. McBride, Neurochemical evidence for glycine as a transmitter and a model for its intrasynaptosomal compartmentation, in “Metabolic Compartmentation and Neurotransmission,” S. Berl, L.D. Clark and D. Schneider, eds., Plenum Press, New York, p. 37 (1983).Google Scholar
  2. 2.
    M. H. Aprison and N. S. Nadi, Glycine: Inhibition from the sacrum to the medulla, in “Amino Acids as Chemical Transmitter,” F. Fonnusm ed., Plenum Press, New York, p. 531 (1977).Google Scholar
  3. 3.
    M. H. Aprison and R. Werman, The distribution of glycine in the cat spinal cord. Life Sci. 4: 2075 (1965).CrossRefGoogle Scholar
  4. 4.
    H. Betz, Biology and structure of the mammalian glycine receptor. T.I.N.S. 10: 113 (1987)Google Scholar
  5. 5.
    H. Betz, D. Graham, F. Pffeiffer and H. Rehm, a-Bungarotoxin and strychnine as tools to characterize neurotransmitter receptors of the central nervous system, in”Toxins as Tools in Neurochemistry,” F. Hucho ana Y. A. Ovchinikov, eds., Gruyter, Berlin, p. 245 (1983).Google Scholar
  6. 6.
    D. A. Curtis, L. Hosli and G. A. R. Johnston, A pharmacological study of the depression of spinal neurons by glycine and related amino acids, Exp. Brain Res. 6: 1 (1968).CrossRefGoogle Scholar
  7. 7.
    D. A. Curtis and G. A. R. Johnston, Amino acid transmitters in the mammalian central nervous system, Ergeb. Physiol. 69: 97 (1974).Google Scholar
  8. 8.
    F. V. DeFeudis, Glycine receptors in the vertebrate central nervous system, Acta Physiol. Lat. Am. 27: 131 (1977).Google Scholar
  9. 9.
    C. J. Pycock and R. W. Kerwin, The status of glycine as a supraspinal neurotransmitter, Life Sci. 28: 2679 (1981).CrossRefGoogle Scholar
  10. 10.
    R. Werman, R. A. Davidoff and M. H. Aprison, Glycine and postsynaptic inhibition in the cat spinal cord, Physiologist, 9: 318 (1966).Google Scholar
  11. 11.
    R. Werman, R. A. Davidoff and M. H. Aprison, Inhibition of motoneurons by iontophoresis of glycine, Nature, 214: 681 (1967)CrossRefGoogle Scholar
  12. 12.
    R. Werman, R. A. Davidoff and M. H. Aprison, Inhibitory action of glycine on spinal neurons in the cat, J. Neurophysiol. 31: 81 (1968).Google Scholar
  13. 13.
    S. H. Wu and W. Oertel, Inhibitory circuitry in the ventral cochlear nucleus is probable mediated by glycine, J. Neurosci. 6: 2691 (1986).Google Scholar
  14. 14.
    A. B. Toung and S. H. Snyder, The glycine synaptic receptor: Evidence that strychnine binding is associated with the ionic conductance mechanism, Proc. Nat. Acad. Sci. U.S.A. 71: 4002 (1974).CrossRefGoogle Scholar
  15. 15.
    T. Hokfelt and A. Ljungdahl, Light and electron microscopic autoradiography on spinal cord slices after incubation with labeled glycine. Brain Res. 32: 189 (1971).CrossRefGoogle Scholar
  16. 16.
    L. L. Iversen and F. E. Bloom, Studies of the uptake of (3 H)glycine in slices and homoginates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41: 131 (1972).CrossRefGoogle Scholar
  17. 17.
    G. P. Wilkin, A. Csillag, R. Balazs, A.E. Kingsbury, J.E. Wilson and A.L. Johnson, Localization of high affinity (H)glycine transport sites in the cerebellar cortex. Brain Res. 216: 11 (1981)CrossRefGoogle Scholar
  18. 18.
    G. Campistron, R. M. Bujis and M. Geffard, Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization, Brain Res, 376: 400 (1986).CrossRefGoogle Scholar
  19. 19.
    P. Ottersen, S. Davanger and J. Storm-Mathisen, Glycine-like immunoreactivity in the cerebellum of rat and Senegaleas banboon, Papio paso: a comparison wish the distribution of GABA-like immunoreactivity and with (H)glycine and (H)GABA uptake. Exp. Brain Res. 66: 211 (1987)Google Scholar
  20. 20.
    D. R. Bristow, N. G. Bowery and G. N. Woodruff, Light microscopic autoradiographic localization of (3H)glycine and (3H)strychnine binding sites in rat brain, Europ. J. Pharmacol. 126: 303 (1986).Google Scholar
  21. 21.
    M. A. Zarbin, J. K. Wamsley and M. J. Kuhar, Glycine receptor: Light microscopic autoradiographic localization with (H)strychnine. J. Nerusci. 1: 532 (1981).Google Scholar
  22. 22.
    A. Probst, R. Cortes and J. M. Palacios, The distribution of glycine receptors in the human brain. A light microscopic autradiographic study using (h)strychnine. Neuroscience 17: 11 (1986).CrossRefGoogle Scholar
  23. 23.
    A. Pfeiffer, R. Simler, G. Grenningloh and H. Betz, Monoclonal antibodies and peptides mapping reveal structural similarlities between the subunit of glycine receptors of the rat spinal cord, Proc. Nat. Acad. Sci. U.S.A. 81: 7224 (1984).CrossRefGoogle Scholar
  24. 24.
    R. A. Altshuler, H. Betz, M. H. Parakkal, K. A. Reeks and R.J. Wenthold, Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res. 369: 316 (1986).CrossRefGoogle Scholar
  25. 25.
    A. Triller, F. Cluzeaud, F. Pfeiffer, H. Betz and H. Korn, Distribution of glycine receptors at central nervous synapses: An immunoelectron microscopy study, J. Cell Biol. 101: 683 (1985).CrossRefGoogle Scholar
  26. 26.
    J. -L. Guesdon, T. Ternynck and S. Avrameas, The use of avidin-biotin interaction in immunoenzymatic technique. J. Histchem. Cytochem. 27: 1131 (1979).CrossRefGoogle Scholar
  27. 27.
    S. -M. Hsu, L. Raine and H. Fanger, Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase technique: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29: 577 (1981).CrossRefGoogle Scholar
  28. 28.
    J. F. R. Konig and R. A. Klippel, “The Rat Brain: A Stereotaxic Atlas of the koretrain and Lower Parts of the Brain Stem”, William and Wilkins, Baltimore, (1963).Google Scholar
  29. 29.
    G. Paxinos and C. Watson, “THE RAT BRAIN in Stereotaxic Coordinates”, Academic Press, New York (1982).Google Scholar
  30. 30.
    A. Brodal, “Neurological Anatomy”, Oxford Univ. Press, New York, (1981).Google Scholar
  31. 31.
    N. Takeda, S. Inagaki, Y. Taguchi, M. Tohyama, T. Watanabe and H. Wada, Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection, Brain Res, 323: 55 (1984).CrossRefGoogle Scholar
  32. 32.
    T. Watanabe, Y. Taguchi, S. Shiosaka, J. Tanaka, H. Kubota, Y. Terano, M. Tohyama and H. Wada, Distribution of the histaminergic neuron system in the central nervous ystem of the rats: A fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 295: 13 (1984)CrossRefGoogle Scholar
  33. 33.
    H. Kishimoto, J. R. Simon and M. H. Aprison, Determination of the equilibrium dissociation constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium independent system, J. Neurochem, 37: 1015 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • T. Murakami
    • 1
  • T. Araki
    • 1
  • M. Yamano
    • 1
  • A. Wanaka
    • 1
  • H. Betz
    • 2
  • M. Tohyama
    • 2
  1. 1.Department of Anatomy IIOsaka University Medical SchoolOsaka 530Japan
  2. 2.Zentrum fur Molekulare BioligieUniversitat HeidelbergHeidelbergGermany

Personalised recommendations