GABA-Activated Chloride Channels in the Retinal Neurons and their Role in the Visual Function

  • Akimichi Kaneko
  • Masao Tachibana
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


The vertebrate retina consists of five types of neurons orderly arranged in three layers. Signals received by the photoreceptor mosaic are relayed to bipolar cells, and then forwarded to retinal ganglion cells. The axon of retinal ganglion cells send the visual signal processed in the retina to the higher CNS. The neuronal chain made of photoreceptors, bipolar cells and ganglion cells provides the most direct signal pathway in the retina. Two types of interneurons, horizontal cells and amacrine cells, are believed to make an inhibitory pathway connecting the above-mentioned direct routes laterally. In this way, horizontal and amacrine cells contribute to the formation of receptive field surrounds which antagonize with the receptive field center.


Bipolar Cell Amacrine Cell Horizontal Cell Cone Photoreceptor Terminal Bulb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Ayoub, and D. M. K. Lam, The release of y—aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. J. Physiol. 355: 191 (1984).Google Scholar
  2. 2.
    A. K. Ball and C. Brandon, Autoradiographic localization of (311)—GABA, —muscimol, and —glycine uptake in goldfish retinas stained for GAD—like immunoreactivity. Invest Ophthal. (suppl.) 26: 94 (1985).Google Scholar
  3. 3.
    N. G. Bowery, D. R. Hill, A. L. Hudson, A. Doble, D. N. Middlemiss, J. Shaw and M. Turnbull, (—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283: 92 (1980).CrossRefGoogle Scholar
  4. 4.
    E. V. Famiglietti, Jr., A. Kaneko and M. Tachibana, Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198: 1267 (1977).CrossRefGoogle Scholar
  5. 5.
    P. Hamill, A. Marty, E. Neher, B. Sakmann and F. J. Sigworth, Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflûgers Archiv 391: 85 (1981).CrossRefGoogle Scholar
  6. 6.
    D. R. Hill and N. G. Bowery, 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290: 149 (1981).CrossRefGoogle Scholar
  7. 7.
    A. T. Ishida, A. Kaneko and M. Tachibana, Responses of solitary retinal horizontal cells from Carassius auratus to L-glutamate and related amino acids. J. Physiol. 348: 255 (1984).Google Scholar
  8. 8.
    A. Kaneko, Receptive field organization of bipolar and amacrine cells in the goldf ish retina. J. Physiol. 235: 133 (1973).Google Scholar
  9. 9.
    A. Kaneko and M. Tachibana, Effects of y-aminobutyric acid on isolated cone photoreceptors of the turtle retina. J. Physiol. 373: 443 (1986).Google Scholar
  10. 10.
    A. Kaneko, T. Ohtsuka and M. Tachibana, GABA sensitivity in solitary turtle cones: Evidence for the feedback pathway from horizontal cells to cones. In “Neurocircuitry of the Retina, A Cajal Memorial.” A. Gall ego and P. Gouras, eds., Elsevier, New York pp 89–98 (1985).Google Scholar
  11. 11.
    H. Kondo and J.-I. Toyoda, GABA and glycine effects on the bipolar cells of the carp retina. Vision Res. 23: 1259 (1983).CrossRefGoogle Scholar
  12. 12.
    D. M. K. Lam and L. Steinman, The uptake of Ey-3H] aminobutyric acid in the goldfish retina. Proc. Natl. Acad. Sci. USA 68: 2777 (1971).CrossRefGoogle Scholar
  13. 13.
    D. M. K. Lam, Y. Y. T. Su, L. Swain, R. E. Marc, C. Brandon and J.-Y. Wu, Immunocytochemical localisation of L-glutamic acid decarboxylase in the goldfish retina. Nature, 278: 565 (1979).CrossRefGoogle Scholar
  14. 14.
    R. E. Marc, W. K. Stell, D. Bok and D. M. K. Lam, GABA-ergic pathways in the goldf ish retina. J. Comp. Neurol. 182: 221 (1978).CrossRefGoogle Scholar
  15. 15.
    M. Murakami, Y. Shimoda, K. Nakatani, E. Miyachi and S. Watanabe, GABA-mediated negative feedback from horizontal cells to cones in carp retina. Jpn. J. Physiol. 32: 911 (1982).CrossRefGoogle Scholar
  16. 16.
    M. Murakami, Y. Shimoda, K. Nakatani, E. Miyachi and S. Watanabe, GABA-mediated negative feedback and color opponency in carp retina. Jpn. J. Physiol. 32: 927 (1982).CrossRefGoogle Scholar
  17. 17.
    T. Ohtsuka, Fluorescence from colorless oil droplets: A new criterion for identification of cone photoreceptors. Neurosci. Lett. 52: 241 (1984).Google Scholar
  18. 18.
    T. Ohtsuka, Spectral sensitivities of seven morphological types of photoreceptors of the turtle, Qeoclemvs reevesii. J. Comp. Neurol. 237: 145 (1985).CrossRefGoogle Scholar
  19. 19.
    T. Ohtsuka, Relation of spectral types to oil droplets in cones of turtle retina. Science 229: 874 (1985).CrossRefGoogle Scholar
  20. 20.
    T. Saito and T. Kuj iraoka, Physiological and morphological identification of two types of on-center bipolar cells in the carp retina. J. Comp. Neurol. 205: 161 (1982).Google Scholar
  21. 21.
    T. Saito, T. Kuj iraoka, T. Yonaha and Y. Chino, Reexamination of photoreceptor-bipolar connectivity patterns in carp retina: HRP-EM and Golgi-EM studies. J. Comp. Neurol. 236: 141 (1985).CrossRefGoogle Scholar
  22. 22.
    E. A. Schwartz, Calcium-independent release of GABA from isolated horizontal cells of the toad retina. J. Physiol. 323: 211 (1982).Google Scholar
  23. 23.
    M. Tachibana and A. Kaneko, y-Aminobutyric acid acts at axon terminals of turtle photoreceptors: Difference in sensitivity among cell types. Proc. Natl. Acad. Sci. USA 81: 7961 (1984).CrossRefGoogle Scholar
  24. 24.
    M. Tachibana and A. Kaneko, y-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: Evidence for negative feedback from amacrine cells. Proc. Natl. Acad. Sci. USA 84: 3501 (1987).CrossRefGoogle Scholar
  25. 25.
    A. Takeuchi and N. Takeuchi, A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J. Physiol. 205: 377 (1969).Google Scholar
  26. 26.
    J.-I. Toyoda and M. Fuj imoto, Analysis of neural mechanisms mediating the effect of horizontal cell polarization. Vision Res. 23: 1143 (1983).CrossRefGoogle Scholar
  27. 27.
    J.-Y. Wu, C. Brandon, Y. Y. T. Su and D. M. K. Lam, Immunocytochemical and autoradiographic localization of GABA system in the vertebrate retina. Mol. Cell Biochem. 39: 229 (1981).CrossRefGoogle Scholar
  28. 28.
    S. Yazulla, GABAergic syngpses in the golf ish retina: An autoradiographic study of 3H-muscimol and“H-GABA binding. J. Comp. Neurol. 200: 83 (1981).CrossRefGoogle Scholar
  29. 29.
    S. Yazulla, Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists. Brain Res. 275: 61 (1983).CrossRefGoogle Scholar
  30. 30.
    S. Yazulla, GABAergic mechanisms in the retina. IA “Progress in Retinal Research.” Vol. 5, N. N. Osborne and G. J. Chader, eds., Pergamon Press, Oxford pp. 1–52 (1986).Google Scholar
  31. 31.
    S. Yazulla and J. Kleinschmidt, Carrier mediated release of GABA from retinal horizontal cells. Brain Res. 263: 63 (1983).CrossRefGoogle Scholar
  32. 32.
    S. R. Zukin, A. B. Young and S. H. Snyder, Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc. Natl. Acad. Sci. USA 71: 4802 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Akimichi Kaneko
    • 1
  • Masao Tachibana
    • 1
  1. 1.Department of Information PhysiologyNational Institute for Physiological SciencesOkazaki 444Japan

Personalised recommendations