Advertisement

Molecular Biology of the GABAA Receptor

  • E. A. Barnard
  • M. G. Darlison
  • N. Fujita
  • T. A. Glencorse
  • E. S. Levitan
  • V. Reale
  • P. R. Schofield
  • P. H. Seeburg
  • M. D. Squire
  • F. A. Stephenson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)

Abstract

The GABAA receptorreceptor is the major molecular site of the ubiquitous inhibitory acEivities of the brain, being present on the great majority of mammalian brain neurones (1). Electrophysiological studies and, especially, recent patch-clamp studies on cultured neurones (2,3) have established that at these sites GABA opens a chloride channel which is integrally associated with its receptor. Further, the GABAA receptor at brain synapses is known to be a site of action of several pharmacologically important classes of drugs. Pharmacological and ligand-binding studies (reviewed in Ref. 4) have identified at least 5 types of binding site on this receptor: (i) the GABA agonist/antagonist site; (ii) the benzodiazepine site, which itself is complex, having interactions with both anxiolytic agonists and anxiogenic “inverse agonists” (5); (iii) the picrotoxin site, where agents such as picrotoxin (5) or t-butylbicyclophosphorothionate (6) block the GABA-activated channel; (iv) the depressant site, recognising the CNS-depressant barbiturates and certain other depressant drugs which prolong the lifetime of the GABA-activated channel (3); this site, also, appears to be multiple, since certain steroids (7), the anaesthetic propanadid (8) and avermectin Bla (9,10) act similarly to depressants in some but not all ways; (v) sites binding the channel-permeating anions (but not other ions) (2,4). Each of these types of ligand site can interact allosterically with one or more of the other types (4). From this network of interactions, it can be deduced that several of these sites can be occupied by their respective ligands simultaneously and that each of the 5 or more types of site must be physically separate on the receptor structure.

Keywords

GABAA Receptor Receptor Subunit Xenopus Oocyte Nicotinic Acetylcholine Receptor Gaba Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Enna, (1983): In: The GABA Receptors, edited by S. J. Enna, pp. 1–23. Humana Press, Clifton, New Jersey.Google Scholar
  2. 2.
    J. Bormann, O. P. Hammill, and B. Sakmann, (1987): Mechanism of anion permeation through channels gated by glycine and y-aminobutyric acid in mouse cultured spinal neurones. J. Physiol., 385: 243–286.Google Scholar
  3. 3.
    J. L. Barker, and D. G. Owen, (1986): Electrophysiological pharmacology of GABA and diazepam in cultured CNS neurons. In Reference 4, pp. 135–166.Google Scholar
  4. 4.
    R. W. Olsen, and J. C. Venter, editors (1986): Benzodiazepine/ GABA Receptors and Chloride Channels: Structural and Functional Properties. Alan R. Liss, New York.Google Scholar
  5. 5.
    C. L. Brown, and I. L. Martin, (1985): Modification of pyrazoloquinolinone affinity by GABA predicts efficacy at the benzodiazepine receptor. Eur. J. Pharmacol., 106: 167–173.Google Scholar
  6. 6.
    C. Van Renterghem, G. Bilbe, S. Moss, T. G. Smart, A. Constanti, D. A. Brown, and E. A. Barnard, (1987): GABA receptors induced in Xenopus oocytes by chick brain mRNA: evaluation of TBPS as a use-dependent channel-blocker. Mol. Brain Res., 2: 21–31.Google Scholar
  7. 7.
    J. J. Lambert, J. A. Peters, and G. A. Cottrell, (1987): Actions of synthetic and endogenous steroids on the GABAA receptor. Trends Pharmacol. Sci., 8: 224–227.Google Scholar
  8. 8.
    E. F. Kirkness, and A. J. Turner, (1986): The yaminobutyrate/benzodiazepine receptor from pig brain. Biochem. J., 233: 259–264.Google Scholar
  9. 9.
    G. Drexler, and W. Sieghart, (1984): Evidence for association of a high affinity avermectin binding site with the benzodiazepine receptor Eur. J. Pharmacol., 99: 269–277.CrossRefGoogle Scholar
  10. 10.
    E. Sigel, and R. Baur, (1987): Effect of avermectin B1 on chick neuronal GABA receptor channels expressed in Xenopus oocytes. Mol. Pharmacol. (in press).Google Scholar
  11. 11.
    E. Sigel, C. Mamalaki, and E. A. Barnard, (1982): Isolation of a GABA receptor from bovine brain using a benzodiazepine affinity column. FEBS Letts, 147: 45–48.CrossRefGoogle Scholar
  12. 12.
    E. Sigel, and E. A. Barnard, (1984): A y-aminobutyric acid/ benzodiazepine receptor complex from bovine cerebral cortex. Improved purification with preservation of regulatory sites and their regulations. J. Biol. Chem., 259: 7219–7223.Google Scholar
  13. 13.
    E. Sigel, F. A. Stephenson, C. Mamalaki, and E. A. Barnard, (1984): The purified GABA/benzodiazepine/barbiturate receptor complex: Four types of ligand-binding sites, and the interactions between them are preserved in a single isolated protein complex. J. Recept. Res., 4: 175–188.Google Scholar
  14. 14.
    F. A. Stephenson, C. Mamalaki, S. 0. Casalotti, and E. A. Barnard, (1986): The GABA receptor and its antibodies. Biochem. Soc. Symp., 52: 33–40.Google Scholar
  15. 15.
    C. Mamalaki, F. A. Stephenson, and E. A. Barnard, (1987): The GABAA/benzodiazepine receptor is a heterotetramer of homologous a and ß subunits. EMBO J., 6: 561–565.Google Scholar
  16. 16.
    S. O. Casalotti, F. A. Stephenson, and E. A. Barnard, (1986): Separate subunits for agonist and benzodiazepine binding in the y-aminobutyric acidA receptor oligomer. J. Biol. Chem., 261: 15013–15016.Google Scholar
  17. 17.
    L. Deng, R. W. Ransom, and R. W. Olsen, (1986): [3H]Muscimol photolabels the y-aminobutyric acid receptor binding site on a peptide subunit distinct from that labelled with benzodiazepines. Biochem. Biophys. Res. Commun., 138: 1308–1314.Google Scholar
  18. 18.
    T. G. Smart, K. M. Houamed, C. Van Renterghem, and A. Constanti, (1986): mRNA-directed synthesis and insertion of functional amino acid receptors in Xenopus laevis oocytes. Biochem. Soc. Trans. 15: 117–122.Google Scholar
  19. 19.
    J. Bormann, and D. E. Clapham, (1985): y-Aminobutyric acid receptor channels in adrenal chromaffin cells: A patch-clamp study. Proc. Natl. Acad. Sci. USA., 82: 2168–2172.Google Scholar
  20. 20.
    P. R. Schofield, M. G. Darlison, N. Fujita, D. R. Burt, F. A. Stephenson, H. Rodriguez, L. M. Rhee, J. Ramachandran, V. Reale, T. A. Glencorse, P. H. Seeburg, and E. A. Barnard, (1987): The brain GABAAA receptor: cloning and functional expression of the cDNAs encoâing its subunits. Nature, 328: 221–227.CrossRefGoogle Scholar
  21. 21.
    K. Sumikawa, M. Houghton, J. S. Emtage, B. M. Richards, and E. A. Barnard, (1981): Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature, 292: 862–864.CrossRefGoogle Scholar
  22. 22.
    E. A. Barnard, R. Miledi, and K. Sumikawa, (1982): Translation of exogenous messenger RNA coding for nicotinic acetycholine receptors produces functional receptors in Xenopus oocytes. Proc. Roy. Soc. Lond. B, 215: 241–246.Google Scholar
  23. 23.
    T. G. Smart, A. Constanti, G. Bilbe, D. A. Brown, and E. A. Barnard, (1983): Synthesis of functional chick brain GABAbenzodiazepine barbiturate/receptor complexes in mRNA-injected Xenopus oocytes. Neurosci. Lett., 40: 55–59.Google Scholar
  24. 24.
    E. A. Barnard, D. Beeson, G. Bilbe, D. A. Brown, A. Constanti, K. Houamed, and T. G. Smart, (1984): A system for the translation of receptor messenger-RNA and the study of the assembly of functional receptors. J. Recept. Res., 4: 681–704.Google Scholar
  25. 25.
    K. Houamed, K. Constanti, T. G. Smart, G. Bilbe, D. A. Brown, E. A. Barnard, and B. M. Richards, (1984): Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA. Nature, 310: 318–321.CrossRefGoogle Scholar
  26. 26.
    G. Grenningloh, A. Rienitz, B. Schmitt, C. Methfessel, M. Zensen, K. Beyreuther, E. D. Gundelfinger, and H. Betz. (1987): Complementary DNA sequence of the strychnine-binding subunit of the glycine receptor and homology with nicotinic acetylcholine receptor proteins. Nature, 328: 215–220.CrossRefGoogle Scholar
  27. 27.
    J-L. Popot, and J-P. Changeux, (1984): Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein Physiol. Rev., 64: 1162–1239.Google Scholar
  28. 28.
    D. Goldman, E. Deneris, W. Luyten, A. Kochhar, J. Patrick, and S. Heinemann, (1987): Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell, 48: 965–973.CrossRefGoogle Scholar
  29. 29.
    T. I. Bonner, N. J. Buckley, A. C. Young, and M. R. Brenn, (1987): Identification of a family of muscarinic acetylcholine receptor genes. Science, 237: 527–532.CrossRefGoogle Scholar
  30. 30.
    M. Noda, Y. Furutani, H. Takahashi, M. Toyosato, T. Tanabe, S. Shimizu, S. Kikyotani, T. Kayano, T. Hirose, S. Inayama, and S. Numa, (1983): Cloning and sequence analysis of calf cDNA and human genomic DNA encloding a-subunit precursor of muscle acetylcholine receptor. Nature, 305: 818–823.CrossRefGoogle Scholar
  31. 31.
    R. M. Schwartz, and M. 0. Dayhoff, (1978): In: Atlas of Protein Sequence and Structure, edited by M. 0. Dayhoff, Vol. 5, Suppl. 3, pp. 353–358. National Biomedical Research Foundation, Washington, D.C.Google Scholar
  32. 32.
    B. M. Conti-Tronconi, M. W. Hunkapiller, and M. A. Raftery, (1984): Molecular weight and structural nonequivalence of the mature a subunit of Torpedo Californica acetylcholine receptor. Proc. Natl. Acad. Sci. USA., 81: 2631–2634.Google Scholar
  33. 33.
    M. Criado, V. Sarin, J. L. Fox, and J. Lindstrom, (1986): Evidence that the acetylcholine binding site is not formed by the sequence a 127–143 of the acetylcholine receptor. Biochemistry, 25: 2839–2846.CrossRefGoogle Scholar
  34. 34.
    D. J. McCormick, and M. Z. Atassi, (1984): Localization and synthesis of the acetylcholine-binding site in the a chain of the Torpedo Californica acetylcholine receptor. Biochem. J., 224: 995–1000.Google Scholar
  35. 35.
    S. Ralston, V. Sarin, H. L. Thanh, J. Rivier, J. L. Fox, and J. Lindstrom, (1987): Synthetic peptides used to locate the a-bungarotoxin binding site and immunogenic regions in a subunits of the nicotinic acetylcholine receptor. Biochemistry, 26: 3261–3266.CrossRefGoogle Scholar
  36. 36.
    A. Karlin, P. N. Kao, and M. DiPaola, (1986): Molecular pharmacology of the nicotinic acetylcholine receptor. Trends Pharmacol. Sci., 7: 304–308.Google Scholar
  37. 37.
    R. H. Guy, and F. Hucho, (1987): The ion channel of the nicotinic acetylcholine receptor. Trends Neurosci., 10: 318–321.CrossRefGoogle Scholar
  38. 38.
    J. Deisenhofer, 0. Epp, K. Miki, R. Huber, and H. Michel, (1985): Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution. Nature, 318: 618–624.Google Scholar
  39. 39.
    E. F. Young, E. Ralston, J. Blake, J. Ramachandran, Z. W. Hall, and R. M. Stroud, (1985): Proc. Natl. Acad. Sci. USA., 82: 626–630.Google Scholar
  40. 40.
    D. Eisenberg, E. Schwarz, M. Komaromy, and R. Wall, (1984): Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol., 179: 125–142.Google Scholar
  41. 41.
    J. Giraudat, M. Dennis, T. Heidmann, J-Y. Chang, and J-Y. Changeux, (1986): Structure of the high-affinity binding site for non-competitive blockers of the acetylcholine receptor: Serine-262 of the 6 subunit is labelled by [H] chlorpromazine. Proc. Natl. Acad. Sci. USA., 83: 2719–2723.Google Scholar
  42. 42.
    F. Hucho, W. Oberthlir, and F. Lottspeich, (1986): The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits. FEBS Letts, 205: 137–142.CrossRefGoogle Scholar
  43. 43.
    K. Imoto, C. Methfessel, B. Sakmann, M. Mishina, Y. Mori, T. Konno, K. Fukuda, M. Kurasaki, H. Bujo, Y. Fujita, and S. Numa, (1986): Location of a 6-subunit region determining ion transport through the acetylcholine receptor channel. Nature, 324: 670–674.CrossRefGoogle Scholar
  44. 44.
    I. Hermans-Borgmeyer, D. Zopf, R-P. Ryseck, B. Hovemann, H. Betz, and E. D. Gundelfinger, (1986): Primary structure of a developmentally regulated nicotinic acetylcholine receptor from Drosophila. EMBO J., 5: 1503–1508.Google Scholar
  45. 45.
    J. Kyte, and R. F. Doolittle, (1982): A simple method for displaying the hydrophathic character of a protein. J. Mol. Biol., 157: 105–132.Google Scholar
  46. 46.
    L. A. C. Blair, E. S. Levitan, J. Marshall, V.E. Dionne and E.A. Barnard, (1988): Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science (in press).Google Scholar
  47. 47.
    E. S. Levitan, P. R. Schofield, D. R. Burt, L. M. Rhee, W. Wisden, M. Kohler, N. Fujita, H. Rodriguez, F. A. Stephenson, M. G. Darlison, E. A. Barnard, P. H. Seeburg, (1988): Structural and functional basis for GABAA receptor heterogeneity. Nature, (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • E. A. Barnard
    • 1
  • M. G. Darlison
    • 1
  • N. Fujita
    • 1
  • T. A. Glencorse
    • 1
  • E. S. Levitan
    • 1
  • V. Reale
    • 1
  • P. R. Schofield
    • 2
  • P. H. Seeburg
    • 2
  • M. D. Squire
    • 1
  • F. A. Stephenson
    • 1
  1. 1.MRC Molecular Neurobiology UnitMRC CentreCambridgeEngland
  2. 2.Laboratory of Molecular NeurendocrinologyZMBHHeidelbergFederal Republic of Germany

Personalised recommendations