Existence of a 5-HT1 Binding Site Different of 5-HT1A, 5-HT1B and 5-HT1C Subtypes and Coupled to a High Affinity Adenylate Cyclase Activation: A Functional 5-HT Receptor Involved in Neuromodulation ?

  • Gilles Fillion
  • Pascal Barone
  • Catherine Fayolle
  • Marie-Paule Fillion
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


A functional receptor for a neurotransmitter is characterized by the existence of a binding site able to recognize specifically a particular ligand and a transduction system coupled to this site and activated (or inhibited) by the binding of an agonistic ligand to the site; the activation of that system will then induce a cascade of events leading to a more integrated physiological effect. This initial event constitutes a sort of minimal criteria to indicate that a binding site might correspond to a functional receptor.


Adenylate Cyclase Adenylate Cyclase Activity Selective Antagonist Functional Receptor Lysergic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley, P.B., Engel, G., Feniuk, W., Fozard, J.R., Humphrey, P.P.A., Middlemiss, D.N., My Lecharane, E.J., Richardson, B.P., and Saxena, P.R., Nomenclature of functional receptors for 5-hydroxytryptamine, Neuropharmacol. 25: 563 (1986).CrossRefGoogle Scholar
  2. 2.
    Fozard, J.R., MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors, Naunyn-Schmiedeberg’s Arch. Pharmacol., 326: 36 (1984).Google Scholar
  3. 3.
    Richardson, B.P., Engel, G., Donatsch, P., and Stadler, P.A., Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs, Nature, 316: 126–131 (1985).CrossRefGoogle Scholar
  4. 4.
    Peroutka, S.J., and Snyder, S.H., Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamine and [3H]spiroperidol, Molec. Pharmacol., 16: 687 (1979).Google Scholar
  5. 5.
    Leysen, J.E., Niemegeers, C.J.E., Van Nueten, J.M., and Laduron, P.M., 3H-Ketanserin (R 41468), a selective 3H-ligand for serotonin2 receptor binding sites, Pharmacology, 21: 301 (1981).Google Scholar
  6. 6.
    Kendall, D.A., and Nahorski, S.R., 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in trat cerebral cortex slices: pharmacological characterization and effects of antidepressants, J. Pharmacol. Exp. Ther., 233: 473 (1985).Google Scholar
  7. 7.
    De Chaffoy de Courcelles, D., Leysen, J.E., De Clerck, F., Van Belle, H., and Janssen, P.A.J., Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites, J. Biol. Chem., 260: 7603 (1985).Google Scholar
  8. 8.
    Bennett, J.P., and Snyder, S.H., Serotonin and lysergic acid diethylamide binding in the brain membranes: relationship to postynaptic serotonin receptors, Mol. Pharmacol., 12: 373 (1976).Google Scholar
  9. 9.
    Fillion, G., Fillion, M.P., Spirakis, C., Bahers, J.M., and Jacob, J., 5-hydroxytryptamine binding to synaptic membranes from rat brain, Life Sci., 18: 65 (1976).CrossRefGoogle Scholar
  10. 10.
    Pedigo, N.W., Yamamura, H.I., and Nelson, D.L.J., Discrimination of multiple [3H]5-HT binding sites by the neuroleptic spiperone in rat brain, Neurochem., 36: 220 (1981).CrossRefGoogle Scholar
  11. 11.
    Schnellmann, R.G., Waters, S.J., and Nelson, D.L., [3H]5- hydroxytryptamine binding sites: species and tissue variation, J. Neurochem., 42: 65 (1984).CrossRefGoogle Scholar
  12. 12.
    Asarch, K.B., Ransom, R.W., and Shih, J.C., 5-HT1A and 5-HT1B selectivity of two phenylpiperazine derivates: evidence for 5-HT1B heterogeneity, Life Sci., 36: 1235 (1985).CrossRefGoogle Scholar
  13. 13.
    Hoyer, D., Engel, and G., Kalkman, H.O., Molecular pharmacology of 5-H11 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8–0H-DPAT, (-) [1251]iodo-cyanopindolol, [3H]mesulergine and [3H]ketanserin, Eur. J. Pharmacol., 118: 13 (1985b).CrossRefGoogle Scholar
  14. 14.
    Peroutka, S.J., Selective interaction of novel anxiolytics with 5-hydroxytryptamine lA receptors, Biol. Psychiatry, 20: 971 (1985).CrossRefGoogle Scholar
  15. 15.
    Middlemiss, D., and Fozard, J., 8-hydroxy-2-(Di-n-propylamino) tetralin discriminates between subtypes of the 5-HT1 recognition site, Eur. J. Pharmacol., 90: 151 (1983).CrossRefGoogle Scholar
  16. 16.
    Yoshikawa, S., and Ishitani, R., Selective labelling of high affinity 5-hydroxytryptamine receptors in whole rat brain. Neuropharmacol., 23: 1227 (1984).CrossRefGoogle Scholar
  17. 17.
    Sills, M.A., Wolfe, B.B., Frazer, A.J., Determination of selective and non selective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex, J. Pharmacol. Exp. Ther., 231: 480 (1984).Google Scholar
  18. 18.
    Weissman-Nanopoulos, D., Mach, E., Magre, J., Demassey, Y., and Pujol, J.F., Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem. Int., 6: 1061 (1985).CrossRefGoogle Scholar
  19. 19.
    Fujita, M., Seo, T., Nishio, H., and Segawa, T., Effects of bicarbonate ions on serotonin binding to rat frontal cortex membranes, Neurochem. Int., 8: 235 (1986).CrossRefGoogle Scholar
  20. 20.
    Gozlan, H., El Mestikawy, D., Pichat, L., Glowinski, J., and Hamon, M., Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT, Nature, 305: 140 (1983).CrossRefGoogle Scholar
  21. 21.
    Hall, M.D., El Mestikawy, S., Emerit, M.B., Pichat, L., Hamon, M., and Gozlan, H., [3H]8-hydroxy-2-(Di-n-Propylamino)Tetralin binding to pre-and post-synaptic 5-Hydroxytryptamine sites in various regions of the rat brain, J. Neurochem., 44: 1685 (1985).CrossRefGoogle Scholar
  22. 22.
    Peroutka, S.J., Pharmacological differenciation and characterization of 5-HT1A, 5-HT1B and 5-HT1C binding sites in rat frontal cortex, J Neurochem., 47: 529 (1986).CrossRefGoogle Scholar
  23. 23.
    Ransom, R.W., Asarch, K.B., and Shih, J.C., Photoaffinity labeling of the 5-hydroxytryptaminelA receptor in rat hippocampus, J. Neurochem., 47: 1066 (1986).CrossRefGoogle Scholar
  24. 24.
    Hoyer, D., Engel, G., and Kalman, H.O., Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-) [1251]cyanopindolol, Eur. J. Pharmacol., 118: 1 (1985a).CrossRefGoogle Scholar
  25. 25.
    Middlemiss, D.N., Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol, Eur. J. Pharmacol., 101: 289 (1984).CrossRefGoogle Scholar
  26. 26.
    Heuring, R.E., and Peroutka, S.J., Characterization of a novel 3H5-hydroxytryptamine binding site subtype in bovine brain membranes, J. Neuroscience, 7: 894 (1987).Google Scholar
  27. 27.
    Cortes, R., Palacios, J.M., and Pazos, A., Visualization of multiple serotonin receptors in the rat brain by autoradiography, Br. J. Pharmacol., 81: 202P (1984).Google Scholar
  28. 28.
    Pazos, A., Hoyer, D., and Palacios, J.M., The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new types of serotonin recognition site, Eur. J. Pharmacol., 106: 539 (1984).CrossRefGoogle Scholar
  29. 29.
    Von Hungen, K., Roberts, S., and Hill, D.F., Serotonin-sensitive adenylate cyclase activity in immature rat brain, Brain Res., 84: 257 (1975).CrossRefGoogle Scholar
  30. 30.
    Enjalbert, A., Hamon, M., Bourgoin, S., and Bockaert, J., Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. I - Development and distribution of serotonin and dopamine -sensitive adenylate cyclases in the rat and guinea-pig brain, Mol. Pharmacol., 14: 2 (1978).Google Scholar
  31. 31.
    Fillion, G., Beaudoin, D., Rousselle, J.C., and Jacob, J., [3H]5-HT binding sites and 5-HT sensitive adenylate cyclase in glial cells membrane fraction, Brain Res., 198: 361 (1980).CrossRefGoogle Scholar
  32. 32.
    Barbaccia, M.L., Brunello, N., Chuang, D.M., and Costa, C.J., Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat, J. Neurochem., 40: 1671 (1983).CrossRefGoogle Scholar
  33. 33.
    Berry-Kravis, E., and Dawson, G., Possible role of gangliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5-HT1) receptor. J. Neurochem., 40: 977 (1983).CrossRefGoogle Scholar
  34. 34.
    Chneiweiss, H., Prochiantz, A., Glowinski, J., and Premont, J., Biogenic amine-sensitive adenylate cyclases in primary culture of neuronal or glial cells from mesenscephalon, Brain Res., 302: 363 (1984).CrossRefGoogle Scholar
  35. 35.
    Shenker, A., Maayani, S., Weinstein, H., and Green, J.P., Two 5-HT receptors linked to adenylate cyclase in guinea-pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone, Eur. J. Pharmacol., 109: 427 (1985).CrossRefGoogle Scholar
  36. 36.
    Fillion, G., Rousselle, J.C., Beaudoin, D., Pradelles, P., Goiny, M., Dray, F., and Jacob, J., Serotonin sensitive adenylate cyclase in horse brain synaptosomal membranes, Life Sci., 24: 1813 (1979).CrossRefGoogle Scholar
  37. 37.
    DeVivo, M., and Maayani, S., Inhibition of forskolin-stimulated adenylate cyclase by 5-HT receptor agonists, Eur. J. Pharmacol., 119: 231 (1985).CrossRefGoogle Scholar
  38. 38.
    Weiss, S., Sebben, M., Kemp, D.E., Bockaert, J., Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmacol., 120: 227 (1986).CrossRefGoogle Scholar
  39. 39.
    Peroutka, S.J., Lebovitz, R.M., and Snyder, S.H., Two distinct central serotonin receptors with different physiological functions, Science, 212: 827 (1981).CrossRefGoogle Scholar
  40. 40.
    Nelson, D.L., Herbert, A., Enjalbert, A., Bockaert, J., and Hamon, M. Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the central nervous system of the rat. I - Kinetic parameters and pharmacological properties, Biochem. Pharmacol., 29: 2445 (1980).CrossRefGoogle Scholar
  41. 41.
    Bockaert, J., Nelson, D.L., Herbet, A., Adrien, J., Enjalbert, A., and Hamon, M., Serotonin-receptors coupled with adenylate cyclase in rat brain: Non-identity with [3H]5-HT binding sites, in: “Serotonin-current aspects of neurochemistry and function,” B. Haber, S. Gabay, M.R. Issidriges, S.A. Alvisatos, ed., Plenum Press, New York (1981).Google Scholar
  42. 42.
    Lowry, O.H., Rosebrough, N., Farr, L., and Randall, R., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193: 265 (1951).Google Scholar
  43. 43.
    Hirai, K., and Koketsu, K., Presynaptic regulation of the release of acetylcholine by 5-hydroxytryptamine, Br. J. Pharmacol., 70, 499 (1980).CrossRefGoogle Scholar
  44. 44.
    Klein, M., Camaro, J., and Kandel, E.R., Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia, PNAS, 79: 5713 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Gilles Fillion
    • 1
  • Pascal Barone
    • 1
  • Catherine Fayolle
    • 1
  • Marie-Paule Fillion
    • 1
  1. 1.Pasteur InstituteNeuro-immuno-endocrinological Pharmacology UnitParis Cedex 15France

Personalised recommendations