Function and Mechanism of the Interaction of GTP-Binding Proteins with α2-Adrenoceptors in the Brain

  • Yasuyuki Nomura
  • Yoshihisa Kitamura
  • Keiko Kawata
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)

Abstract

Multiple subtypes of adrenoceptors including αl-, α2-, β1- and β2-adrenoceptors have been found in the central nervous system (CNS) (1, 2). Stimulation of α2-adrenoceprtors causes inhibition of adenylate cyclase activity (3), and inhibition of noradrenaline (NA) release from central and peripheral noradrenergic nerve terminals (4). Clonidine exerts hypotensive and sedative effects by its acting on α2-adrenoceptors in the brain (5). Pertussis toxin, isletactivating protein (IAP), suppresses the inhibition of adenylate cyclase activity mediated by inhibitory receptors such as α2-adrenoceptor, D2-dopamine receptor, muscarinic acetylcholine receptor and opiate receptor, and modulates the agonist-binding affinities of these receptors as result of ADP-ribosylation of α-subunit of inhibitory GTP-binding protein, Gi (6). To gain insight into the functional roles, the molecular mechanism and aging in coupling of α2-adrenoceptor with Gi in the CNS, we investigated influences of clonidine and IAP on locomotor activity in rats, NA release from brain slices and adenylate cyclase activity in brain membranes.

Keywords

Adenylate Cyclase Cholera Toxin Pertussis Toxin Adenylate Cyclase Activity Noradrenaline Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Bylund, and D. C. U’Prichard, Characterization of a1- and a2-adrenergic receptors, Int. Rev. Neurobiol. 24: 343 (1983).Google Scholar
  2. 2.
    R. J. Lefkowitz, J. M. Stadel, and M. G. Caron, Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization, Ann. Rev. Biochem. 52: 159 (1983).CrossRefGoogle Scholar
  3. 3.
    L. E. Limbird, a2 Adrenergic system: models for exploring hormonal inhibition of adenylate cyclase, Trends Pharmacol. Sci. 4: 135 (1983).CrossRefGoogle Scholar
  4. 4.
    S. Z. Langer, Presynaptic receptors and their role in the regulation of neurotransmitter release, Br. J. Pharmacol. 60: 481 (1977).CrossRefGoogle Scholar
  5. 5.
    W. Hoefke, and H. M. Jennewein, Mechanisms of antihypertensive action of clonidine in the relation to its psychotropic effects, in: “Psychopharmacology of Clonidine,” H. Lai and S. Fielding, eds., Alan R. Liss, Inc., New York, p. 75 (1981).Google Scholar
  6. 6.
    M. Ui, Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory compornent of adenylate cyclase, Trends Pharmacol. Sci. 5: 277 (1984).CrossRefGoogle Scholar
  7. 7.
    E. P. Noble, R. J. Wurtman, and J. Axelrod, A simple and rapid method for injecting H -norepinephrine into the lateral ventricle of the rat brain, Life Sci. 6: 281 (1967).CrossRefGoogle Scholar
  8. 8.
    Y. Nomura, I. Yotsumoto, and Y. Nishimoto, Ontogeny of influence of clonidine on high potassium-induced release of noradrenaline and specific [H]clonidine binding in the rat brain cortex, Dev. Neurosci. 5: 198 (1982).CrossRefGoogle Scholar
  9. 9.
    J. R. Simon, J. F. Contrera, and M. J. Kuhar, Binding of [3H]kainic acid, an analogue of L-glutamate, to brain membranes, J. Neurochem. 26: 141 (1976).Google Scholar
  10. 10.
    Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Anal. Biochem. 58: 541 (1974).CrossRefGoogle Scholar
  11. 11.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680 (1970).CrossRefGoogle Scholar
  12. 12.
    Y. Nomura, K. Kawata, Y. Kitamura, and H. Watanabe, Effects of pertussis toxin on the a2-adrenoceptorinhibitory GTP-binding protein-adenylate cyclase system in rat brain: pharmacological and neurochemical studies, Eur. J. Pharmacol. 134: 123 (1987).CrossRefGoogle Scholar
  13. 13.
    J. L. Boyer, C. Cardenas, C. Posadas, and J. A. GarciaSainz, Pertussis toxin induces tachycardia and impairs the increase in blood pressure produced by alpha2adrenergic agonists, Life Sci. 33: 2627 (1983).CrossRefGoogle Scholar
  14. 14.
    N. Fujita, M. Nakahiro, I. Fukuchi, K. Saito, and H. Yoshida, Effects of pertussis toxin on D2-dopamine receptor in rat striatum: evidence for coupling of Ni regulatory protein with D2-receptor, Brain Res. 333: 231 (1985).CrossRefGoogle Scholar
  15. 15.
    M. Parenti, F. Tirone, G. Giagnoni, N. Pecora, and D. Parolaro, Pertussis toxin inhibits the antinociceptive action of morphine in the rat, Eur. J. Pharmacol. 124: 357 (1986).CrossRefGoogle Scholar
  16. 16.
    Y. Nomura, I. Yotsumoto, and T. Segawa, High potassium-induced, calcium-dependent monoamine release from brain slices of the newborn rat, Japan J. Pharmacol. 29: 847 (1979).CrossRefGoogle Scholar
  17. 17.
    K. Kawata, and Y. Nomura, Suppressing effect of pertussis toxin on clonidine-induced inhibition of noradrenaline release from cerebral cortical slices of rats, Neurosci. Res. 4: 236 (1987).CrossRefGoogle Scholar
  18. 18.
    S. B. Qi, Y. Kitamura, and Y. Nomura, Effects of high KC1, isoproterenol, NaF and forskolin on noradrenaline release from cerebral cortical slices of adult and senescent rats, Neurochem. Int.: in press.Google Scholar
  19. 19.
    Y. Kitamura, Y. Nomura, and T. Segawa, Possible involvement of inhibitory GTP binding regulatory protein in a2-adrenoceptor-mediated inhibition of adenylate cyclase activity in cerebral cortical membranes of rats, J. Neurochem. 45: 1504 (1985).CrossRefGoogle Scholar
  20. 20.
    R. J. Miller, Second messengers, phosphorylation and neurotransmitter release, Trends Neurosci. 8: 463 (1985).CrossRefGoogle Scholar
  21. 21.
    Y. Nomura, M. Kawai, K. Mita, and T. Segawa, Developmental changes of cerebral cortical [3H]clonidine binding in rats: influences of guanine nucleotide and cations, J. Neurochem. 42: 1240 (1984).CrossRefGoogle Scholar
  22. 22.
    Y. Nomura, Y. Kitamura, and T. Segawa, Decrease of clonidine binding affinity to a2-adrenoceptor by ADP-Importance of Sulfhydryl Groups in Coupling of a2-Adrenoceptor J. Neurochem. 44: 364 (1985).CrossRefGoogle Scholar
  23. 23.
    Y. Kitamura, H. Tanaka, and Y. Nomura, [3H]Clonidine and [H]yohimbine binding to solubilized a2-adrenoceptors from rat cerebral cortex, Eur. J. Pharmacol. 123: 263 (1986).CrossRefGoogle Scholar
  24. 24.
    Y. Nomura, I. Yotsumoto, E. Motomori-Suzaki, M. Kawai, and T. Segawa, Influences of isoproerenol pretreatment on cerebral cortical bindings of [H]clonidine and [3H]dihydroalprenolol in infant and adult rats, Dev. Brain Res. 9: 381 (1983).CrossRefGoogle Scholar
  25. 25.
    Y. Nomura, M. Kawai, and T. Segawa, The interaction between 8- and a2-adrenoceptors in cerebral cortical membranes: isoproterenol-induced increase in [H]clonidine binding in rats, Brain Res. 302: 101 (1984).CrossRefGoogle Scholar
  26. 26.
    Y. Kitamura, and Y. Nomura, 8-adrenoceptor stimulation-induced increase in the number of a2-adrenoceptors of cerebral cortical membranes in rats, Brain Res. 329: 259 (1985).CrossRefGoogle Scholar
  27. 27.
    Y. Kitamura, and Y. Nomura, Enhancement of [3H]clonidine binding to rat cerebral synaptic membranes by treatment with arachidonic acid, prostaglandin (PG) D2, PGE2 and PGF2a, Japan J. Pharmacol. 42: 321 (1986).CrossRefGoogle Scholar
  28. 28.
    M. Kawai., and Y. Nomura, Involvement of sulfhydryl groups in cerebral cortical [3H]clonidine binding in developing rats, Eur. J. Pharmacol. 91: 449 (1983).Google Scholar
  29. 29.
    Y. Kitamira, and Y. Nomura, Uncoupling of rat cerebral cortical a2-adrenoceptors from GTP-binding proteins by N-ethylmaleimide, J. Neurochem.: in press.Google Scholar
  30. 30.
    Y. Nomura, and T. Segawa, The effect of a-adrenoceptor antagonists and metiamide on clonidine-induced locomotor stimulation in the infant rat, Br. J. Pharmacol. 66: 531 (1979).CrossRefGoogle Scholar
  31. 31.
    Y. Nomura, K. Oki, and T. Segawa, Pharmacological characterization of central a-adrenoceptors which mediated clonidine-induced locomotor hypoactivity in the developing rat, Naunyn-Schmiedeberg’s Arch. Pharmacol. 311: 41 (1980).CrossRefGoogle Scholar
  32. 32.
    Y. Nomura, The locomotor effect of clonidine and its interaction with a-flupenthixol or haloperidol in the developing rat, Naunyn-Schmiedeberg’s Arch. Pharmacol. 313: 33 (1980).CrossRefGoogle Scholar
  33. 33.
    M. Kawai, T. Sakaue, C. Watanabe Y. Nomura, and T. Segawq., Specific binding of [’H]WB4101, [3H]clonidine and [H]dihydroalprenolol in cerebral cortical membranes in developing, adult and old rats, Japan J. Pharmacol. 36: 265 (1984).CrossRefGoogle Scholar
  34. 34.
    Y. Nomura, Y. Kitamura, M. Kawai, and T. Segawa, a2Adrenoceptor-GTP-binding regulatory protein-adenylate cyclase system in cerebral cortical membranes of adult and senescent rats, Brain Res. 379: 118 (1986).Google Scholar
  35. 35.
    S. B. Qi, and Y. Nomura, Loss of inhibitory effects of clonidine on a high K+-evoked noradrenaline release from cerebral cortical slices of senescent rats, Neurosci. Res.: in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Yasuyuki Nomura
    • 1
    • 2
  • Yoshihisa Kitamura
    • 1
    • 2
  • Keiko Kawata
    • 1
  1. 1.Department of Pharmacology Research Institute for WAKAN-YAKU (Oriental Medicine)Toyama Medical and Pharmaceutical UniversityToyamaJapan
  2. 2.Department of Pharmacology Faculty of Pharmaceutical SciencesHokkaido UniversitySapporo 060Japan

Personalised recommendations