Skip to main content

Correlation between the Binding Parameters of Muscarinic Agonists and thier Inhibition of Adenylate Cyclase Activity

  • Chapter
Neuroreceptors and Signal Transduction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 236))

Abstract

Muscarinic receptors are widely distributed throughout the body and play a key role in numerous vital functions.1 Activation of muscarinic receptors decreases the rate and force of contraction of the heart, relaxes peripheral blood vessels, constricts the airways of the lung, increases the secretions or motility of various organs of the gastrointestinal tract, increases the secretions of the lacrimal, salivary and sweat glands, and constricts the iris sphincter and ciliary muscles of the eye. Muscarinic receptors also participate in important functions within the brain including learning, memory and the control of posture.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Pepeu and H. Ladinsky, eds., “Cholinergic Mechanisms,” Plenum Press, New York (1981).

    Google Scholar 

  2. T.-P. Lee, J. F. Kuo, and P. Greengard, Role of muscarinic cholinergic receptors in regulation of guanosine 3’:5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 69: 3287 (1972).

    Article  Google Scholar 

  3. J. Van Sande, C. Erneux, and J. E. Dumont, Negative control of TSH action by iodide and acetylcholine: mechanism of action in intact thyroid cells, J. Cyclic Nucleotide Res. 3: 335 (1977).

    Google Scholar 

  4. F. Murad, Y.-M. Chi, T. W. Rall, and E. W. Sutherland, The effect of catecholamines and choline esters on the formation of adenosine 3’,5’-cyclic phosphate by preparations from cardiac muscle and liver, J. Biol. Chem. 237: 1233 (1962).

    Google Scholar 

  5. H. Kurose, T. Katada, T. Amano, and M. Ui, Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via a-adrenergic, cholinergic, and opiate receptors in euroblastoma x glioma hybrid cells, J. Biol. Chem. 258: 4870 (1983).

    Google Scholar 

  6. B. Sakmann, A. Noma, and W. Trautwein, Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart, Nature 303: 250 (1983).

    Article  Google Scholar 

  7. A. Constanti and D. A. Brown, M-currents in voltage-clamped mammalian sympathetic neurones, Neurosci. Lett. 24: 289 (1981).

    Article  Google Scholar 

  8. J. V. Halliwell and P. R. Adams, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71 (1982).

    Article  Google Scholar 

  9. A. Yatani, J. Codina, A. M. Brown, and L. Birnbaumer, Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk, Science 235: 207 (1987).

    Article  Google Scholar 

  10. M. R. Hokin and L.E. Hokin, Effects of acetylcholine on phospholipids in the pancreas, J. Biol. Chem. 209: 549 (1954).

    Google Scholar 

  11. M. J. Berridge, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212: 849 (1983).

    Google Scholar 

  12. H. Streb, R. F. Irvine, M. J. Berridge, and I. Schultz, Release of CA+2 from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature, 306: 67 (1983).

    Article  Google Scholar 

  13. A. Kishimoto, Y. Takai, T. Mori, U. Kikkawa, and Y. Nishizuka, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255: 2273 (1980).

    Google Scholar 

  14. M. Kuno and P. Gardner, Ion channels activated by inositol 1,4,5trisphosphate in plasma membrane of human T-lymphocytes, Nature 326: 301 (1987).

    Article  Google Scholar 

  15. D. O. Lucas, S. M. Bajjalieh, J. A. Kowalchyk, and T. J. F. Martin, Direct stimulation by thyrotropin-releasing hormone (TRH) of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide-modulated mechanism, Biochem. Biophys. Res. Comm. 132: 721 (1985).

    Article  Google Scholar 

  16. G. S. Johnson and V. R. Mukku, Evidence in intact cells for an involvement of GTP in the activation of adenylate cyclase, J. Biol. Chem. 254: 95 (1979).

    Google Scholar 

  17. C. M. Smith, J. F. Henderson, and H. P. Baer, Effect of GTP on cyclic AMP concentrations in intact Ehrlich ascites tumor cells, J. Cyclic Nucleotide Res. 3: 347 (1977).

    Google Scholar 

  18. R. B. Meeker and T. K. Harden, Muscarinic receptor-mediated control of cyclic AMP metabolism, Mol. Pharmacol. 23: 384 (1983).

    Google Scholar 

  19. A. M. Watanabe, M. M. McConnaughey, R. A. Strawbridge, J. W. Fleming, L. R. Jones, and H. R. Besch, Muscarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamines, J. Biol. Chem. 253: 4833 (1978).

    Google Scholar 

  20. J. H. Brown, Cholinergic inhibition of catecholamine-stimulable cyclic AMP accumulation in murine atria, J. Cyclic Nucleotide Res. 5: 423 (1979).

    Google Scholar 

  21. M. C. Olianas, P. Onali, N. Y. Neff, and E. Costa, Adenylate cyclase activity of synaptic membranes from rat striatum, inhibition by muscarinic agonists, Mol. Pharmacol. 29: 393 (1983).

    Google Scholar 

  22. T. Evans, M. M. Smith, L. T. Tanner, and T. K. Harden, Muscarinic cholinergic receptors of two cell lines that regulate cyclic AMP metabolism by different molecular mechanisms. Mol. Pharmacol. 26: 395 (1984).

    Google Scholar 

  23. K. H. Jakobs, K. Aktories, and G. Schultz, GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists, N. S. Arch. Pharmacol. 310: 113 (1979).

    Article  Google Scholar 

  24. N. M. Nathanson, Molecular properties of the muscarinic acetylcholine receptor, Ann. Rev. Neurosci. 10: 195 (1987).

    Article  Google Scholar 

  25. F. J. Ehlert, The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium, Mol. Pharmacol. 28: 410 (1985).

    Google Scholar 

  26. R. F. Furchgott and P. Bursztyn, Comparison of dissociation constants and relative efficacies of selected agonists acting on parasympathetic receptors, Ann. N. Y. Acad. Sci. 144: 882 (1967).

    Article  Google Scholar 

  27. F. J. Ehlert, Coupling of muscarinic receptors to adenylate cyclase in the rabbit myocardium: effects of receptor inactivation, J. Pharmacol. Ex. Ther. 240: 23 (1987).

    Google Scholar 

  28. J. H. Brown and D. Goldstein, Differences in muscarinic receptor reserve for inhibition of adenylate cyclase and stimulation of phosphor inositide hydrolysis in chick heart cells, Mol. Pharmacol. 30: 566 (1986).

    Google Scholar 

  29. A. De Lean, J. M. Stadel, and R. J. Lefkowitz, A ternary complex model explains the agonist-specific binding properties of adenylate cyclasecoupled ß-adrenergic receptor, J. Biol. Chem. 255: 7108 (1980).

    Google Scholar 

  30. G. Weber, Energetics of ligand binding to proteins, Adv. Prot. Chem. 29: 1 (1975).

    Article  Google Scholar 

  31. T. W. T. Lee, M. J. Sole, and J. W. Wells, Assessment of a ternary complex model for the binding of agonists to neurohumoral receptors, Biochemistry 25: 7009 (1986).

    Article  Google Scholar 

  32. C. P. Berrie, N. J. M. Birdsall, E. C. Hulme, M. Keen, and J. M. Stockton, Solubilization and characterization of guanine neucleotidesensitive muscarinic agonist binding sites from rat myocardium, Br. J. Pharmacol. 82: 853 (1984).

    Article  Google Scholar 

  33. N. J. M. Birdsall, A. S. V. Burgen, and E. C. Hulme, The binding of agonists to brain muscarinic receptors, Mol. Pharmacol. 14: 723 (1987).

    Google Scholar 

  34. H.-M. S. Wong, M. J. Sole, and J. W. Wells, Assessment of mechanistic proposals for the binding of agonists to cardiac muscarinic receptors, Biochemistry 25: 6995 (1986).

    Article  Google Scholar 

  35. F. J. Ehlert, W. R. Roeske, L. B. Rosenberger, and H. I. Yamamura, The influence of guanyl-5’-yl imidodiphosphate and sodium on muscarinic receptor binding in the rat brain and longitudinal muscle of the rat ileum, Life Sci. 26: 245 (1980).

    Article  Google Scholar 

  36. M. Waelbroeck, P. Robberecht, P. Cuatelain, and J. Cristophe, Rat cardiac muscarinic receptors. 1. Effects of guanine nucleotides on high-and low-affinity binding sites, Mol. Pharmacol. 21: 581 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehlert, F.J. (1988). Correlation between the Binding Parameters of Muscarinic Agonists and thier Inhibition of Adenylate Cyclase Activity. In: Kito, S., Segawa, T., Kuriyama, K., Tohyama, M., Olsen, R.W. (eds) Neuroreceptors and Signal Transduction. Advances in Experimental Medicine and Biology, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5971-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5971-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5973-0

  • Online ISBN: 978-1-4757-5971-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics