Correlation between the Binding Parameters of Muscarinic Agonists and thier Inhibition of Adenylate Cyclase Activity

  • Frederick J. Ehlert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


Muscarinic receptors are widely distributed throughout the body and play a key role in numerous vital functions.1 Activation of muscarinic receptors decreases the rate and force of contraction of the heart, relaxes peripheral blood vessels, constricts the airways of the lung, increases the secretions or motility of various organs of the gastrointestinal tract, increases the secretions of the lacrimal, salivary and sweat glands, and constricts the iris sphincter and ciliary muscles of the eye. Muscarinic receptors also participate in important functions within the brain including learning, memory and the control of posture.1


Adenylate Cyclase Muscarinic Receptor Receptor Occupancy Adenylate Cyclase Activity Muscarinic Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Pepeu and H. Ladinsky, eds., “Cholinergic Mechanisms,” Plenum Press, New York (1981).Google Scholar
  2. 2.
    T.-P. Lee, J. F. Kuo, and P. Greengard, Role of muscarinic cholinergic receptors in regulation of guanosine 3’:5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 69: 3287 (1972).CrossRefGoogle Scholar
  3. 3.
    J. Van Sande, C. Erneux, and J. E. Dumont, Negative control of TSH action by iodide and acetylcholine: mechanism of action in intact thyroid cells, J. Cyclic Nucleotide Res. 3: 335 (1977).Google Scholar
  4. 4.
    F. Murad, Y.-M. Chi, T. W. Rall, and E. W. Sutherland, The effect of catecholamines and choline esters on the formation of adenosine 3’,5’-cyclic phosphate by preparations from cardiac muscle and liver, J. Biol. Chem. 237: 1233 (1962).Google Scholar
  5. 5.
    H. Kurose, T. Katada, T. Amano, and M. Ui, Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via a-adrenergic, cholinergic, and opiate receptors in euroblastoma x glioma hybrid cells, J. Biol. Chem. 258: 4870 (1983).Google Scholar
  6. 6.
    B. Sakmann, A. Noma, and W. Trautwein, Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart, Nature 303: 250 (1983).CrossRefGoogle Scholar
  7. 7.
    A. Constanti and D. A. Brown, M-currents in voltage-clamped mammalian sympathetic neurones, Neurosci. Lett. 24: 289 (1981).CrossRefGoogle Scholar
  8. 8.
    J. V. Halliwell and P. R. Adams, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71 (1982).CrossRefGoogle Scholar
  9. 9.
    A. Yatani, J. Codina, A. M. Brown, and L. Birnbaumer, Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk, Science 235: 207 (1987).CrossRefGoogle Scholar
  10. 10.
    M. R. Hokin and L.E. Hokin, Effects of acetylcholine on phospholipids in the pancreas, J. Biol. Chem. 209: 549 (1954).Google Scholar
  11. 11.
    M. J. Berridge, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212: 849 (1983).Google Scholar
  12. 12.
    H. Streb, R. F. Irvine, M. J. Berridge, and I. Schultz, Release of CA+2 from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature, 306: 67 (1983).CrossRefGoogle Scholar
  13. 13.
    A. Kishimoto, Y. Takai, T. Mori, U. Kikkawa, and Y. Nishizuka, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255: 2273 (1980).Google Scholar
  14. 14.
    M. Kuno and P. Gardner, Ion channels activated by inositol 1,4,5trisphosphate in plasma membrane of human T-lymphocytes, Nature 326: 301 (1987).CrossRefGoogle Scholar
  15. 15.
    D. O. Lucas, S. M. Bajjalieh, J. A. Kowalchyk, and T. J. F. Martin, Direct stimulation by thyrotropin-releasing hormone (TRH) of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide-modulated mechanism, Biochem. Biophys. Res. Comm. 132: 721 (1985).CrossRefGoogle Scholar
  16. 16.
    G. S. Johnson and V. R. Mukku, Evidence in intact cells for an involvement of GTP in the activation of adenylate cyclase, J. Biol. Chem. 254: 95 (1979).Google Scholar
  17. 17.
    C. M. Smith, J. F. Henderson, and H. P. Baer, Effect of GTP on cyclic AMP concentrations in intact Ehrlich ascites tumor cells, J. Cyclic Nucleotide Res. 3: 347 (1977).Google Scholar
  18. 18.
    R. B. Meeker and T. K. Harden, Muscarinic receptor-mediated control of cyclic AMP metabolism, Mol. Pharmacol. 23: 384 (1983).Google Scholar
  19. 19.
    A. M. Watanabe, M. M. McConnaughey, R. A. Strawbridge, J. W. Fleming, L. R. Jones, and H. R. Besch, Muscarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamines, J. Biol. Chem. 253: 4833 (1978).Google Scholar
  20. 20.
    J. H. Brown, Cholinergic inhibition of catecholamine-stimulable cyclic AMP accumulation in murine atria, J. Cyclic Nucleotide Res. 5: 423 (1979).Google Scholar
  21. 21.
    M. C. Olianas, P. Onali, N. Y. Neff, and E. Costa, Adenylate cyclase activity of synaptic membranes from rat striatum, inhibition by muscarinic agonists, Mol. Pharmacol. 29: 393 (1983).Google Scholar
  22. 22.
    T. Evans, M. M. Smith, L. T. Tanner, and T. K. Harden, Muscarinic cholinergic receptors of two cell lines that regulate cyclic AMP metabolism by different molecular mechanisms. Mol. Pharmacol. 26: 395 (1984).Google Scholar
  23. 23.
    K. H. Jakobs, K. Aktories, and G. Schultz, GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists, N. S. Arch. Pharmacol. 310: 113 (1979).CrossRefGoogle Scholar
  24. 24.
    N. M. Nathanson, Molecular properties of the muscarinic acetylcholine receptor, Ann. Rev. Neurosci. 10: 195 (1987).CrossRefGoogle Scholar
  25. 25.
    F. J. Ehlert, The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium, Mol. Pharmacol. 28: 410 (1985).Google Scholar
  26. 26.
    R. F. Furchgott and P. Bursztyn, Comparison of dissociation constants and relative efficacies of selected agonists acting on parasympathetic receptors, Ann. N. Y. Acad. Sci. 144: 882 (1967).CrossRefGoogle Scholar
  27. 27.
    F. J. Ehlert, Coupling of muscarinic receptors to adenylate cyclase in the rabbit myocardium: effects of receptor inactivation, J. Pharmacol. Ex. Ther. 240: 23 (1987).Google Scholar
  28. 28.
    J. H. Brown and D. Goldstein, Differences in muscarinic receptor reserve for inhibition of adenylate cyclase and stimulation of phosphor inositide hydrolysis in chick heart cells, Mol. Pharmacol. 30: 566 (1986).Google Scholar
  29. 29.
    A. De Lean, J. M. Stadel, and R. J. Lefkowitz, A ternary complex model explains the agonist-specific binding properties of adenylate cyclasecoupled ß-adrenergic receptor, J. Biol. Chem. 255: 7108 (1980).Google Scholar
  30. 30.
    G. Weber, Energetics of ligand binding to proteins, Adv. Prot. Chem. 29: 1 (1975).CrossRefGoogle Scholar
  31. 31.
    T. W. T. Lee, M. J. Sole, and J. W. Wells, Assessment of a ternary complex model for the binding of agonists to neurohumoral receptors, Biochemistry 25: 7009 (1986).CrossRefGoogle Scholar
  32. 32.
    C. P. Berrie, N. J. M. Birdsall, E. C. Hulme, M. Keen, and J. M. Stockton, Solubilization and characterization of guanine neucleotidesensitive muscarinic agonist binding sites from rat myocardium, Br. J. Pharmacol. 82: 853 (1984).CrossRefGoogle Scholar
  33. 33.
    N. J. M. Birdsall, A. S. V. Burgen, and E. C. Hulme, The binding of agonists to brain muscarinic receptors, Mol. Pharmacol. 14: 723 (1987).Google Scholar
  34. 34.
    H.-M. S. Wong, M. J. Sole, and J. W. Wells, Assessment of mechanistic proposals for the binding of agonists to cardiac muscarinic receptors, Biochemistry 25: 6995 (1986).CrossRefGoogle Scholar
  35. 35.
    F. J. Ehlert, W. R. Roeske, L. B. Rosenberger, and H. I. Yamamura, The influence of guanyl-5’-yl imidodiphosphate and sodium on muscarinic receptor binding in the rat brain and longitudinal muscle of the rat ileum, Life Sci. 26: 245 (1980).CrossRefGoogle Scholar
  36. 36.
    M. Waelbroeck, P. Robberecht, P. Cuatelain, and J. Cristophe, Rat cardiac muscarinic receptors. 1. Effects of guanine nucleotides on high-and low-affinity binding sites, Mol. Pharmacol. 21: 581 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Frederick J. Ehlert
    • 1
  1. 1.Department of Pharmacology, College of MedicineUniversity of California, IrvineIrvineUSA

Personalised recommendations