The Phosphoinositide-Linked CNS Muscarinic Receptor

  • B. W. Agranoff
  • S. K. Fisher
  • A. M. Heacock
  • K. A. Frey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


The importance of muscarinic synapses in the central nervous system is well-known. Potent toxins such as atropine, known to the ancient Romans, block acetylcholine binding to its receptor. Selective effects of scopolamine on memory have for many years implicated cholinergic mechanisms in learning and memory. A specific hypothesis has been proposed relating lack of acetylcholine at muscarinic synapses with the symptomatology of Alzheimer’s disease (1). In addition, several neurological and psychiatric diseases are associated with apparent loss of cholinergic markers in the brain, or are responsive to treatment with anti-cholinergic agents. The role of the muscarinic synapse in the development and treatment of CNS diseases thus assumes a potentially central role, the understanding of which underlies the possibility of rational treatment. In addition to a possible altered cholinergic neurotransmission in Alzheimer’s disease (1,2), there are indications that changes in muscarinic receptor (mAChR) function may underlie Huntington’s disease (3), depression (4–6), temporal lobe epilepsy (7) and narcolepsy (8). Also, anti-muscarinic agents have been reported to improve symptoms in Parkinson’s disease (9) and dystonia (10,11). Several classes of frequently prescribed medications have significant anti-muscarinic potencies, including various anti-psychotic, antidepressant and anti-histaminergic agents.


Muscarinic Receptor Temporal Lobe Epilepsy Inositol Phosphate Superior Cervical Ganglion Muscarinic Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. T. Coyle, D. L. Price and M. R. DeLong, Alzheimer’s disease: A disorder of cortical cholinergic innervation, Science 219: 1184 (1983).CrossRefGoogle Scholar
  2. 2.
    R. D. Terry and R. Katzman, Senile dementia of the Alzheimer type, Ann. Neurol. 14: 497 (1983).CrossRefGoogle Scholar
  3. 3.
    E. D. Bird and L. L. Iversen, Huntington’s chorea: Post mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia, Brain 97: 457 (1974).CrossRefGoogle Scholar
  4. 4.
    D. S. Janowsky, M. K. El-Yousef, J. M. Davis and H. J. Sekerke, A cholinergic-adrenergic hypothesis of mania and depression, Lancet 11: 6732 (1972).Google Scholar
  5. 5.
    S. C. Risch, R. M. Cohen, D. S. Janowsky, N. H. Kalin, N. Sitaram, J. C. Gillin and D. L. Murphy, Physostigmine induction of depressive symptomatology in normal human subjects, Psychiatry Res. 4: 89 (1981).CrossRefGoogle Scholar
  6. 6.
    S. C. Dilsaver and J. F. Greden, Antidepressant withdrawal-induced activation (hypomania and mania): Mechanism and theoretical significance, Brain Res. Rev. 7: 29 (1984).CrossRefGoogle Scholar
  7. 7.
    J. G. Fitz and J. O. McNamara, Muscarinic cholinergic regulation of epileptic spiking in kindling, Brain Res. 178: 117 (1979).CrossRefGoogle Scholar
  8. 8.
    R. E. Boehme, T. L. Baker, I. N. Mefford, J. D. Barchas, W. C. Dement and R. D. Ciaranello, Narcolepsy: Cholinergic receptor changes in an animal model, Life Sci. 34: 1825 (1984).CrossRefGoogle Scholar
  9. 9.
    S. Fahn and D. B. Calne, Considerations in the management of parkinsonism, Neurology 28: 5 (1978).CrossRefGoogle Scholar
  10. 10.
    R. E. Burke, S. Fahn, J. Jankovic, C. D. Marsden, A. E. Land, S. Gollomp and J. Ilson, Tardive dystonia: Late-onset and persistent dystonia caused by antipsychotic drugs, Neurology 32: 1335 (1982).CrossRefGoogle Scholar
  11. 11.
    S. Fahn, High dosage anticholinergic therapy in dystonia, Neurology 33: 1255 (1983).CrossRefGoogle Scholar
  12. 12.
    M.-M. Mesulam, E. J. Mufson, B. H. Wainer and A. I. Levy, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Chl-Ch6), Neuroscience 10: 1185 (1983).CrossRefGoogle Scholar
  13. 13.
    K. A. Frey, R. L. E. Ehrenkaufer, S. Beaucage and B. W. Agranoff, Quantitative in vivo receptor binding. I. Theory and application to the muscarinic cholinergic receptor, J. Neurosci. 5: 421 (1985).Google Scholar
  14. 14.
    K. A. Frey, R. L. E. Ehrenkaufer and B. W. Agranoff, Quantitative in vivo receptor binding. II. Autoradiographic imaging of muscarinic cholinergic receptors, J. Neurosci. 5: 2407 (1985).Google Scholar
  15. 15.
    K. A. Frey, R. D. Hichwa, R. L. E. Ehrenkaufer and B. W. Agranoff, Quantitative in vivo receptor binding III: Tracer kinetic modeling of muscarinic cholinergic receptor binding, Proc. Natl. Acad. Sci. USA 82: 6711, 1985.CrossRefGoogle Scholar
  16. 16.
    K. A. Frey, R. A. Koeppe, D. M. Jewett, G. K. Mulholland, R. D. Hichwa, D. E. Kuhl and B. W. Agranoff, The in vivo distribution of [11c ‘scopolamine in human brain determined by positron emission tomography, Soc. Neurosci. Abstracts 13: 1658 (1987).Google Scholar
  17. 17.
    R. A. Koeppe, K. A. Frey, D. E. Kuhl and B. W. Agranoff, Tracer kinetic analysis of [11C]scopolamine binding in human brain, Soc. Neurosci. Abstracts 13: 1658 (1987).Google Scholar
  18. 18.
    S. K. Fisher and B. W. Agranoff, Receptor activation and inositol lipid hydrolysis in neural tissues, J. Neurochem. 48: 999 (1987).CrossRefGoogle Scholar
  19. 19.
    M. J. Berridge and R. F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315 (1984).CrossRefGoogle Scholar
  20. 20.
    P. F. Worley, J. M. Baraban, S. Supattapone, V. S. Wilson and S. H. Snyder, Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium, J. Biol. Chem. 262: 12132 (1987).Google Scholar
  21. 21.
    R. F. Irvine and R. M. Moor, Microinjection of inositol 1,3,4,5tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240: 917 (1986).Google Scholar
  22. 22.
    M. G. Low, Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors, Biochem. J. 244: 1 (1987).Google Scholar
  23. 23.
    H. Woelk, K. Kanig and K. Peiler-Ichikawa, Incorporation of 32P into the phospholipids of neuronal and glial cell enriched fractions isolated from rabbit cerebral cortex, J. Neurochem. 23: 1057 (1974).CrossRefGoogle Scholar
  24. 24.
    A. A. Abdel-Latif, S.-J. Yau and J. P. Smith, Effect of neurotransmitters on phospholipid metabolism in rat cerebral-cortex slices-cellular and subcellular distribution, J. Neurochem. 22: 383 (1974).CrossRefGoogle Scholar
  25. 25.
    R. A. Gonzales, J. B. Feldstein, F. T. Crews and M. K. Raizada, Receptor mediated inositide hydrolysis is a neuronal response: Comparison of primary neuronal and glial cultures, Brain Res. 345: 350 (1985).CrossRefGoogle Scholar
  26. 26.
    B. Pearce, M. Cambray-Deakin, C. Morrow, J. Grimble and S. Murphy, Activation of muscarinic and of al-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates, J. Neurochem. 45: 1534 (1985).CrossRefGoogle Scholar
  27. 27.
    N. M. Cohen, D. M. Schmidt, R. C. McGlennen and W. L. Klein, Receptor-mediated increases in phosphatidylinositol turnover in neuron-like cell lines, J. Neurochem. 40: 547 (1983).CrossRefGoogle Scholar
  28. 28.
    S. K. Fisher and R. M. Snider, Differential receptor occupancy requirements for muscarinic cholinergic stimulation of inositol lipid hydrolysis in brain and in neuroblastomas, Mol. Pharmacol. 32: 81 (1987).Google Scholar
  29. 29.
    S. B. Masters, T. K. Harden and J. H. Brown, Relationships between phosphoinositide and calcium responses to muscarinic agonists in 1321N1 astrocytoma cells, Mol. Pharmacol. 26: 149 (1984).Google Scholar
  30. 30.
    S. K. Fisher, C. A. Boast and B. W. Agranoff, The muscarinic stimulation of phospholipid labeling is independent of its cholinergic input. Brain Res. 189: 284 (1980).CrossRefGoogle Scholar
  31. 31.
    S. K. Fisher, K. A. Frey and B. W. Agranoff, Loss of muscarinic receptors and of stimulated phospholipid labeling in ibotenatetreated hippocampus, J. Neurosci. 1: 1407 (1981).Google Scholar
  32. 32.
    L. E. Hokin, Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion, Proc. Natl. Acad. Sci. USA 53: 1369 (1965).CrossRefGoogle Scholar
  33. 33.
    L. E. Hokin, Effects of acetylcholine on the incorporation of 34P into various phospholipids in slices of normal and denervated superior cervical ganglia of the cat, J. Neurochem. 13: 179 (1966).CrossRefGoogle Scholar
  34. 34.
    S. K. Fisher, P. D. Klinger and B. W. Agranoff, Muscarinic agonist binding and phospholipid turnover in brain, J. Biol. Chem. 258: 7358 (1983).Google Scholar
  35. 35.
    S. K. Fisher, J. C. Figueiredo and R. T. Bartus, Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine, J. Neurochem. 43: 1171 (1984).CrossRefGoogle Scholar
  36. 36.
    R. A. Gonzales and F. T. Crews, Characterization of the cholinergic stimulation of phosphoinositide hydrolysis of rat brain slices, J. Neurosci. 4: 3120 (1984).Google Scholar
  37. 37.
    M. D. Jacobson, M. Wusteman and C. P. Downes, Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland, J. Neurochem. 44: 465 (1985).CrossRefGoogle Scholar
  38. 38.
    D. W. Gil and B. B. Wolfe, Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase, J. Pharmacol. Exp. Ther 232: 608 (1985).Google Scholar
  39. 39.
    M. C. Olianas, P. Onali, N. H. Neff and E. Costa, Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists, Mol. Pharmacol. 23: 393 (1983).Google Scholar
  40. 40.
    J. H. Brown and S. L. Brown, Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism, J. Biol. Chem. 259: 377 (1984).Google Scholar
  41. 41.
    M. McKinney, S. Stenstrom and E. Richelson, Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations, Mol. Pharmacol. 27: 223 (1985).Google Scholar
  42. 42.
    S. K. Fisher, Inositol lipids and signal transduction at CNS muscarinic receptors, Trends Pharmacol. Sci. Suppl: Subtypes of Muscarinic Receptors 11: 61 (1986).Google Scholar
  43. 43.
    T. Evans, J. R. Hepler, S. B. Masters, J. H. Brown and T. K. Harden, Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors, Biochem. J. 232: 751 (1985).Google Scholar
  44. 44.
    S. K. Fisher and R. T. Bartus, Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain, J. Neurochem. 45: 1087 (1985).CrossRefGoogle Scholar
  45. 45.
    R. P. Stephenson, A modification of receptor theory, Br. J. Pharmacol. 11: 379 (1956).Google Scholar
  46. 46.
    J. H. Brown and D. Goldstein, Differences in muscarinic receptor reserve for inhibition of adenylate cyclase and stimulation of phosphoinositide hydrolysis in chick heart cell, Mol. Pharmacol. 30: 566 (1986).Google Scholar
  47. 47.
    T. K. Harden, M. M. Heng and J. H. Brown, Receptor reserve in the calcium-dependent cyclic AMP response of astrocytoma cells to muscarinic receptor stimulation: Demonstration by agonist-induced desensitization receptor inactivation, and phorbol ester treatment, Mol. Pharmacol. 30: 200 (1986).Google Scholar
  48. 48.
    B. Ringdahl, Determination of dissociation constants and relative efficacies of oxotremorine analogs at muscarinic receptors in the guinea pig ileum by pharmacological procedures, J. Pharmacol. Exp. Ther. 228: 199 (1984).Google Scholar
  49. 49.
    S. B. Masters, M. T. Quinn and J. H. Brown, Agonist-induced desensitization of muscarinic receptor-mediated calcium efflux without concomitant desensitization of phosphoinositide hydrolysis, Mol. Pharmacol. 27: 325 (1985).Google Scholar
  50. 50.
    L. G. Costa, G. Kaylor and S. D. Murphy, Carbachol and norepinephrine-stimulated phosphoinositide metabolism in rat brain: Effect of chronic cholinesterase inhibition, J. Pharmacol. Exp. Ther. 239: 32 (1986).Google Scholar
  51. 51.
    M. Watson, T. W. Vickroy, W. R. Roeske and H. I. Yamamura, Functional and biochemical basis for multiple muscarinic acetylcholine receptors, Prog. Neuropsychopharmacol. Biol. Psychiatry 9: 569 (1985).CrossRefGoogle Scholar
  52. 52.
    T. I. Bonner, N. J. Buckley, A. C. Young and M. R. Brann, Identification of a family of muscarinic acetylcholine receptor genes, Science 237: 527 (1987).CrossRefGoogle Scholar
  53. 53.
    A. M. Heacock, S. K. Fisher and B. W. Agranoff, Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover, J. Neurochem. 48: 1904 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • B. W. Agranoff
    • 1
  • S. K. Fisher
    • 1
  • A. M. Heacock
    • 1
  • K. A. Frey
    • 1
  1. 1.Neuroscience Laboratory, Mental Health Research Institute, and Departments of Biochemistry, Pharmacology and PsychiatryUniversity of MichiganAnn ArborUSA

Personalised recommendations