In Vitro Studies on Relationships between Muscarinic Receptors and Somatostatin in the Rat Brain

  • Shozo Kito
  • Rie Miyoshi
  • Yoshihiro Nakata
  • Tomio Segawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)


Recently, interactions among various neurotransmitters and neuromodulators have been a target of increasing attentions in neuroscientific researches. Such interactions which have been verified either pharmacologically or physiologically may be classified into several types when observed morphologically, that is such possibilities as co-existence within one neuron, conventional synaptic formation and even non-synaptic transmission between non-contiguous nerve cells have been hitherto discussed. There have been several papers which suggest that some of the neuropeptides affect the turnover rate of acetylcholine in the hippocampus, and a possible regulatory mechanism of neuropeptides on the synaptic transmission of conventional neurotransmitters is assumed (1).


Nerve Growth Factor Muscarinic Receptor High Affinity Binding Site Inositol Phospholipid Muscarinic Receptor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. L. Wood, D. L. Cheney, and E. Costa, Interaction of neuropeptides with cholinergic septal-hippocampal pathway: indication for a possible trans-synaptic regulation, In: “Cholinergic Mechanisms”, Plenum Press, New York, p. 715 (1981)CrossRefGoogle Scholar
  2. 2.
    R. Miyoshi, S. Kito, K. Mizuno, and H. Matsubayashi, Effects of somatostatin on muscarinic acetylcholine receptor binding in the rat hippocampus, Japan. J. Pharmacol., 40: 291 (1986).CrossRefGoogle Scholar
  3. 3.
    R. Miyoshi, S. Kito, K. Mizuno, and H. Matsubayashi, Is the effect of somatostatin on muscarinic receptors selective to M1 type? Brain Research, 377: 348 (1986).CrossRefGoogle Scholar
  4. 4.
    D. L. Shelton and L. F. Reichardt, Studies on the expression of the ß nerve growth factor(NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons, Proc. Natl. Acad. Sci. USA, 83: 2714 (1986).CrossRefGoogle Scholar
  5. 5.
    E. De Robertis, A. Pellegrino De Iraldi, G. Rodoriguez De Lores Arnaiz, and L. Saloganicoff, Cholinergic and non-cholinergic nerve endings in rat brain. I. isolation and subcellular distribution of acetylcholine and acetylcholinesterase, J. Neurochem., 9: 23 (1962)CrossRefGoogle Scholar
  6. 6.
    M. J. Berridge, R. M. C. Dawson, C. P. Downes, J. P. Heslop, and R. F. Irvine, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J., 212: 473 (1983).Google Scholar
  7. 7.
    H. Hidaka, M. Inagaki, S. Kawamoto, and Y, Sasaki, Isoquinoline- sulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C, Biochemistry, 23: 5036 (1984).CrossRefGoogle Scholar
  8. 8.
    E. Brown, D. A. Kendall, and S. R. Nahorski, Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. receptor characterisation, J. Neurochem., 42: 1379 (1984).CrossRefGoogle Scholar
  9. 9.
    A. Janowsky, R. Labarca, and S. M. Paul, Characterization of;eurotransmitter receptor-mediated phosphatidylinositol hydolysis in the rat hippocampus, Life Sciences, 35: 1953 (1984).CrossRefGoogle Scholar
  10. 10.
    J. M. Lundberg, B. Hedlund, and T. Bartfai, Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat sub-mandibular salivary gland, Nature, 295: 147 (1982).CrossRefGoogle Scholar
  11. 11.
    S. Tanaka and A. Tsujimoto, Somatostatin facilitates the serotonin release from rat cerebral cortex, hippocampus and hypothalamus slices, Brain Research, 208: 219 (1981).CrossRefGoogle Scholar
  12. 12.
    D. Malthe-Sorenssen, P. L. Wood, D. L. Cheney, and E. Costa, Modulation of the turnover rate of acetylcholine in rat brain by intraventricular injections of thyrotropin-releasing hormone, somatostatin, neurotensin and angiotensin II. J. Neurochem., 31: 685 (1978).CrossRefGoogle Scholar
  13. 13.
    R. A. Peterfreund and W. W. Vale, Muscarinic cholinergic stimulation of somatostatin secretion from long term dispersed cell cultures of fetal rat hypothalamus: inhibition by gamma-aminobutyric acid and serotonin, Endocrinology, 112: 526 (1983).CrossRefGoogle Scholar
  14. 14.
    J. H. Morrison, J. B. Scherr, R. Benoit, and U DeGirolami, Neuropathology of the somatostatin system in neocortex of patients with senile dementia of the Alzheimer’s type (SDAT), Abstract, Society for Neuroscience, 14th Annual Meeting, 2: 894 (1984).Google Scholar
  15. 15.
    P. L. McGeer, E. G. McGeer, J. Suzuki, and M, Norman, Cholinergic and noradrenergic systems in aging, Alzheimer’s disease and Down’s syndrome, Abstract, Society for Neuroscience, 14th Annual Meeting, 2: 995 (1984).Google Scholar
  16. 16.
    N. J. M. Birdsall, E. C. Hulme, and F. R. S. Arnold Burgen, The character of the muscarinic receptors in different regions of the rat brain, Proc. R. Soc. London, 207: 1 (1980).CrossRefGoogle Scholar
  17. 17.
    N. J. M. Birdsall, E. C. Hulme, J. Stockton, A. S. V. Burgen, C. P. Berrie, R. Hammer, E. H. F. Wong, and M. J. Zigmond, Muscarinic receptor subclasses: evidence from binding studies. In: “CNS Receptor — From Molecular Pharmacology to Behavior”, Raven Press, New York, p. 323 (1983).Google Scholar
  18. 18.
    F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, The nature of muscarinic receptor binfing. In: “Handbook of Psychopharmacology”, Plenum Press, New York, p. 241 (1983).Google Scholar
  19. 19.
    D. C. Mash, D. D. Flynn, and L. T. Potter, Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation, Science, 228: 1115 (1985).CrossRefGoogle Scholar
  20. 20.
    L. M. Jones, C. J. Kirk, and R. H. Michell, Molecular events following activation of muscarinic receptors: the role of inositol phospholipids, Scand. J. Gastroenterol., Suppl, 17: 33 (1982).CrossRefGoogle Scholar
  21. 21.
    S. J. Weiss, J. S. Mckinney, and J. W. Putney, Receptor-mediated net breakdown of phosphatidylinositol 4,5-bis-phosphate in parotid acinar cells, Biochem. J., 206: 555 (1982).Google Scholar
  22. 22.
    M. Raiteri, R. Leardi, and M. Marchi, Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain, J. Pharmacol. Exp. Ther., 228: 209 (1984).Google Scholar
  23. 23.
    L. E. Limbird, Activation and attenuation of adenylate cyclase, Biochem, J., 195: 1 (1981).Google Scholar
  24. 24.
    D. D. Flynn and L. T. Potter, Different effects of N-ethylmaleimide on M1 and M2 muscarinic receptor in the rat brain, Proc. Natl. Acad. Sci. USA, 82: 580 (1985).CrossRefGoogle Scholar
  25. 25.
    D. Gurwitz and M. Sokolovsky, Agonist-specific reverse regulation of muscarinic receptors by transition metal ions and guanine nucleotides, Biochem. Biophys. Res. Commun., 96: 1296 (1980).CrossRefGoogle Scholar
  26. 26.
    M. D. Jacobson, M. Wusteman, and P. Downes, Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland, J. Neurochem., 44: 465 (1985).CrossRefGoogle Scholar
  27. 27.
    M. Sokolovsky, D. Gurwitz, and R. Galron, Muscarinic receptor binding in mouse brain: regulation by guanine nucleotides, Biochem. Biophys. Res. Commun., 94: 487 (1980).CrossRefGoogle Scholar
  28. 28.
    T. W. Vickroy, M. Watson, H. I. Yamamura, and W. R. Roeske, Differential regulation of putative M1/M2 muscarinic receptors: implications for different receptor-effector coupling mechanisms, in: “Neurotransmitter Receptors: Mechanisms of Action and Regulation”, Plenum Press, New York, p. 99 (1984).CrossRefGoogle Scholar
  29. 29.
    M. J. Berridge and R. F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315 (1984).CrossRefGoogle Scholar
  30. 30.
    S. Cockcroft and B. D. Gomperts, Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phospho- diesterase, Nature, 314: 534 (1985).CrossRefGoogle Scholar
  31. 31.
    R. Labarca, A. Janowsky, J.Patel, and S. M. Paul, Phorbol esters inhibit agonist-induced 3[H]inositol-l-phosphate accumulation in rat hippocampal slices, Biochem. Biophy. Res. Commun., 123: 703 (1984).CrossRefGoogle Scholar
  32. 32.
    H. Hatanaka, H. Tsukui, and I. Nihonmatsu, Septal cholinergic neurons from postnatal rat can survive in the dissociate culture conditions in the presence of nerve growth factor, Neurosci. Lett., 79: 85 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Shozo Kito
    • 1
  • Rie Miyoshi
    • 1
  • Yoshihiro Nakata
    • 2
  • Tomio Segawa
    • 2
  1. 1.Third Department of Internal Medicine, Department of PharmacologyHiroshima University School of MedicineMinami-ku, Hiroshima, 734Japan
  2. 2.Institute of Pharmaceutical SciencesHiroshima University School of MedicineMinami-ku, Hiroshima, 734Japan

Personalised recommendations