Receptor-Stimulated System Mediated Interactions of Neuropeptides in GH3 Cells

  • N. Ogawa
  • K. Haba
  • S. Hirakawa
  • K. Mizukawa
  • T. Tsushima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 236)

Abstract

After the discovery of the coexistence of neuropeptides and classical neurotransmitters or neuropeptides, many reports have appeared about the coexistence of neurotransmitters in various central and peripheral neuronal systems (1,2). However, evidence has only been presented indicating the coexistence of these substances, and it is not known whether or not this coexistence has important physiological function. Such coexistence motivated us to examine the interactions of not only cotransmitters but also neuropeptides in different families.

Keywords

Adenylate Cyclase Membrane Fraction Vasoactive Intestinal Peptide Phorbol Ester Pituitary Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hökfelt, O. Johansson, A. Ljungdahl, J. M. Lundberg and M. Schultzberg, Peptidergic neurones, Nature 284: 515 (1980).CrossRefGoogle Scholar
  2. T. L. O’Donohue, W. R. Millington, G. E. Handelman, P. C. Contreras and B. M. Choronwall, On the 50th anniversary of Dale’s law: multiple neurotransmitter neurons, Trends Pharmacol. Sci. 6:305 (1985).Google Scholar
  3. 3.
    A. H. Tashjian, Jr., Clonal strains of hormone-producing pituitary cells, Methods Enzymol. 58: 527 (1979).Google Scholar
  4. P. M. Hinkle and A. H. Tashjian, Jr., Receptors for thyrotropinreleasing hormome in prolactin-producing rat pituitary cells in culture, J. Biol. Chem. 248:6180 (1973).Google Scholar
  5. 5.
    P. M. Hinkle, D. G. Lewis and T. L. Greer, Thyrotoropin-releasing hormone-receptor interaction in GH3 pituitary cells, Endocrinology 106: 1000 (1980).Google Scholar
  6. T. F. J. Martin, Thyrotropin-releasing hormone rapidly activates the phosphodiester hydrolysis of polyphoinositides in GH3 pituitary cells, J. Biol. Chem. 258:14816 (1983).Google Scholar
  7. 7.
    M. J. Rebecchi and M. C. Gershengorn, Thyroliberin stimulates rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phosphodiesterase in rat mammotropic pituitary cells, Biochem. J. 216: 287 (1983).Google Scholar
  8. M. C. Gershengorn, E. Geras, V. Spina Purrello and M. J. Rebecchi, Inositol trisphosphate mediates thyrotropin-releasing hormone mobilization of nonmitochondrial calcium in rat mammotropic pituitary cells, J. Biol. Chem. 259:10675 (1084).Google Scholar
  9. C. W. Fearon and A. H. Tashjian, Jr., Thyrotropin-releasing hormone induces redistribution of protein kinase C in GH4C1 rat pituitary cells, J. Biol. Chem. 260:8366 (1985).Google Scholar
  10. D. S. Drust and T. F. J. Martin, Thyrotropin-releasing hormone rapidly activates protein phosphorylation in GH3 pituitary cells by a lipid-linked, protein kinase C-mediated pathway, J. Biol. Chem. 259:14520 (1984).Google Scholar
  11. 11.
    C. H. Macphee and A. H. Drummond, Thyrotropin-releasing hormone stimulate rapid breakdown of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate in GH3 pituitary tumor cells, Mol. Pharmacol. 25: 193 (1984).Google Scholar
  12. 12.
    M. A. Langshore and M. H. Makman, Stimulation of retinal adenylate cyclase by vasoactive intestinal peptide (VIP), Eur. J. Pharmacol. 70: 237 (1981).Google Scholar
  13. 13.
    D. W. Mrquardt, An algorithm for least-squeres estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11: 431 (1963).CrossRefGoogle Scholar
  14. D. R. Sibley, R. H. Stresser, M. G. Caron and R. J. Lefkowitz, Homologous desensitization of adenylate cyclase is associated with phosphorylation of the (3-adrenergic receptor, J. Biol. Chem. 260:3883 (1985).Google Scholar
  15. D. R. Sibley, J. R. Peters, P. Nambi, M. C. Caron and R. J. Lefkowitz, Desensitization of turkey erythrocyte adenylate cyclase, J. Biol. Chem. 259:9742 (1984).Google Scholar
  16. J. D. Bell and L. L. Brunton, Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters, J. Biol. Chem. 261:12036 (1986).Google Scholar
  17. M. J. Cronin, S. T. Summers, M A. Sortino and E. L. Hewlett, Protein kinase C enhances growth hormone releasing factor (1–40)-stimulated cyclic AMP levels in anterior pituitary, J. BIol. Chem. 261:13932 (1986).Google Scholar
  18. 18.
    E. W. Karbon, S. Shenolikar and S. J. Enna, Phorbol esters enhance neurotransmitter-stimulated cyclic AMP production in rat brain slices, J. Neurochem. 47: 1566 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • N. Ogawa
    • 1
  • K. Haba
    • 1
  • S. Hirakawa
    • 2
  • K. Mizukawa
    • 3
  • T. Tsushima
    • 4
  1. 1.Institute for NeurobiologyOkayama University Medical SchoolShikatacho, Okayama 700Japan
  2. 2.Dept. of Medicine 3Okayama University Medical SchoolShikatacho, Okayama 700Japan
  3. 3.Dept. of AnatonyOkayama University Medical SchoolShikatacho, Okayama 700Japan
  4. 4.Dept. of Medicine 2Tokyo Women’s Medical CollegeShinjukuku, Tokyo 162Japan

Personalised recommendations