Abstract

The temporal lobes are usually associated with the processing of auditory stimuli; indeed, the primary and association auditory areas are localized within the superior temporal gyms. Nevertheless, the temporal lobe also receives extensive projections from the somesthetic and visual association areas 18 and 19 (Jones & Powell, 1970; Seltzer and Pandya, 1978); receives and processes gustatory, visceral, and olfactory sensations; harbors the amygdala and hippocampus within its inferior depths; and contains a considerable number of neurons that are heavily involved in the performance of complex visual integrative activities, including visual closure and the recognition of specific meaningful forms. Indeed, it has been argued that the temporal lobe evolved from visual cortex (Diamond, 1943), and it is apparent based on a variety of neurophysiological, neuroanatomical, and behavioral studies that the middle, inferior, and posterior—superior temporal lobe are indeed cortical visual areas.

Keywords

Temporal Lobe Temporal Lobe Epilepsy Environmental Sound Left Temporal Lobe Arcuate Fasciculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., and Mathai, K. V. (1983). The effect of right temporal lesions on matching of smells. Neuropsychologia, 21, 277–282.PubMedGoogle Scholar
  2. Abrams, R., and Taylor, M. A. (1980). Psychopathology and the electroencephalogram. Biological Psychiatry, 15, 871–878.PubMedGoogle Scholar
  3. Albert, M. L., and Bear, D. (1974). Time to understand. A case study of word deafness with reference to the role of time in auditory comprehension. Brain, 97, 383–394.Google Scholar
  4. Albert, M. L., Sparks, R., von Strockert, T., and Sax, D. (1972). A case of auditory agnosia. Linguistic and nonlinlguistic processing. Cortex, 8, 427–443.PubMedGoogle Scholar
  5. Albright, T. D., Desimone, R., and Gross, C. G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology, 51, 16–31.PubMedGoogle Scholar
  6. Anel, R. N., Golden, C. J., Berg, R. A., et al. (1983). Regional blood flow in schizophrenia. Archives of General Psychiatry, 40, 258–263.Google Scholar
  7. Auerbach, S. H., Allard, T., Naeser, M., et al. (1982). Pure word deafness. Brain, 105, 271–300.Google Scholar
  8. Baldwin, M., Lewis, S. A., and Bach, S. A. (1959). The effects of lysergic after cerebral ablation. Neurology (New York), 9, 469–474.Google Scholar
  9. Bartlet, J. E. A. (1951). A case of organized visual halluciantion in an old man with cataract, and their relation to the phenomena of the phantom limb. Brain, 84, 363–373.Google Scholar
  10. Bear, D. (1977). The significance of behavior change in temporal lobe epilepsy. McLean Hospital Journal, 9, 11–23.Google Scholar
  11. Bear, D. M. (1979). Temporal lobe epilepsy: A syndrome of sensory-limbic hyperconnexion. Cortex, 15, 357–384.PubMedGoogle Scholar
  12. Bear, D. M., Levin, K., Blumer, D., et al. (1982). Interictal behaviour in hospitalized temporal lobe epileptics. Journal of Neurology, Neurosurgery and psychiatry, 45, 481–488.Google Scholar
  13. Beaumont, J. G., and Dimond, S. J. (1973). Brain disconnection and schizophrenia. British Journal of Psychiatry, 23, 661–662.Google Scholar
  14. Berman, K. F., Weinberger, D. R., Shelton, R. C., and Zec, R. F. (1987). A relationship between anatomical and physiological brain pathology in schizophrenia. American Journal of Psychiatry, 144, 1277–1282.PubMedGoogle Scholar
  15. Berman, K. F., Zek, R. F., and Weinberger, D. R. (1986). Physiological dysfucntion of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 43, 126–143.PubMedGoogle Scholar
  16. Blumstein, S., and Cooper, W. E. (1974). Hemispheric processing of intonational contours, Cortex, 10, 146158.Google Scholar
  17. Bogerts, B., Meertz, E., and Schonfeldt-Bausch, R. (1985). Basal ganglia and limbic system pathology in schizophrenia. Archives of General Psychiatry, 42, 784–791.PubMedGoogle Scholar
  18. Bradshaw, J. L., Taylor, M. J., Patterson, K., and Nettleton, N. (1980). Upright and inverted faces, and housefronts, in the two visual fields: A right and a left hemisphere contribution. Journal of Clinical Neuropsychologj’, 2, 245–257.Google Scholar
  19. Brodai, A. (1981). Neurological anatomy. New York: Oxford University Press.Google Scholar
  20. Brown, J. W. (1972). Aphasia, apraxia and agnosia. Springfield, IL: Charles Thomas.Google Scholar
  21. Brown, R., Colter, N., Corsellis, J. A. N., et al. (1986). Postmortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry, 43, 36–42.Google Scholar
  22. Bryden, M. P. (1967). A model for the sequential organization of behaviour. Canadian Journal of Psychology, 21, 36–56.Google Scholar
  23. Carr, S. A. (1980). Interhmispheric transfer of stereognostic information in chronic schizophrenics. British Journal of Psychiatry, 136, 53–58.PubMedGoogle Scholar
  24. Chapman, L. F., and Walter, R. D. (1965). Actions of lysergic acid dienthalamid on averaged human cortical evoked rsposnes to light flash. Recent Advances in Biological Psychiatry, 7, 23–36.Google Scholar
  25. Chapman, L. F., Walter, R. D., Ross, W. (1963). Altered electrical activity of human hippocampus and amygdala induced by LSD-25. Physiologist, 5, 118.Google Scholar
  26. Chase, R. A. (1967). Discussion. In F. L. Darley (Ed.), Brain mechanisms underlying speech and language (pp. 136–139 ). New York: Grune and Stratton.Google Scholar
  27. Chaika, E. (1982). A unified explanation for the diverse structural deviations reported for adult schizophrenics with disrupted speech. Journal of Communication Disorders, 15, 167–189.PubMedGoogle Scholar
  28. Chen, R., and Forster, F. M. (1973). Cursive and gelastic epilepsy. Neurology (New York), 23, 1019–1029.Google Scholar
  29. Chow, K. L. (1950). A retrograde cell degeneration study of the cortical projection field of the pulvinar of the monkey. Journal of Comparative Neurology, 93, 313–340.PubMedGoogle Scholar
  30. Corkin, S. (1965). Tactually guided maze learning in man. Neuropsychologia, 3, 339–352.Google Scholar
  31. Critchley, M. (1939). Neurological aspect of visual and auditory hallucinations. British Medical Journal, 33, 634–639.Google Scholar
  32. Cutting, J. E. (1974). Two left hemisphere mechanisms in speech perception. Perception and Psychophysics, 16, 601–612.Google Scholar
  33. Damasio, A. R., and Damsio, H. (1983). Localization of lesions in achromatopsia and prosopagnosia. In A. Kertesz (Ed.), Localization in neuropsychology (pp. 182–197 ). Orlando, FL: Academic Press.Google Scholar
  34. Delaney, R. C., Rosen, A. J., Mattson, R. H., and Novelly, R. A. (1980). Memory function in focal epilepsy: A comparison of non-surgical unilateral temporal lobe and frontal lobe samples. Cortex, 16, 103–117.PubMedGoogle Scholar
  35. DeRenzi, E. (1982). Disorder of space exploration and cognition. Chichester: John Wiley and Sons.Google Scholar
  36. DeRenzi, E. (1986). Prosopagnosia in two patients with CT-scan evidence of damage confined to the right hemisphere. Neuropsychologia, 24, 385–389.Google Scholar
  37. DeRenzi, E., Faglioni, P., and Spinnler, H. (1968). The performance of patients with unilateral brain damage on face recognition tasks. Cortex, 4, 17–34.Google Scholar
  38. DeRenzi, E., and Spinnler, H. (1966). Facial recognition in brain-damaged patients. An experimental approach. Neurology (New York), 16, 145–152.Google Scholar
  39. Desimone, R., and Gross, C. G. (1979). Visual areas in the temporal cortex of the macaque. Brain Research, 178, 363–380.PubMedGoogle Scholar
  40. Desimone, R., and Schein, S. J. (1987). Visual properties iof neruons in area V4 of the Macaque: Sensitivity to stimulus form. Journal of Neurophysiology, 57, 835–867.PubMedGoogle Scholar
  41. Dewson, J. H., Pribram, K., and Lynch, J. C. (1969). Effects of ablations of temporal cortex upon speech sound discrimination in the monkey. Experimental Neurology, 24, 579–591.PubMedGoogle Scholar
  42. Diamond, I. T. (1973). The evolution of the tectal-pulvinar system in mammals: Structural and behavioural studies of the visual system. Symposium of the Zoological Society of London, 33, 205–233.Google Scholar
  43. Earnest, M. P., Monroe, P. A., and Yarnell, P. R. (1977). Cortical deafness. Neurology (New York), 27, 1172–1175.Google Scholar
  44. Faber, R., Abrams, R., Taylor, M., Kasprisin, A., Morris, C., and Weisz, R. (1983). Comparison of schizophrenic patients with formal thought disorder and neurologically impaired patients with aphasia. American Journal of Psychiatry, 140, 1348–1351.PubMedGoogle Scholar
  45. Felleman, D. J., and Kaas, J. H. (1974). Receptive field properties of neruons in middle temporal visual area (MT) of owl monkeys. Journal of Neurophysiology, 52, 488–513.Google Scholar
  46. Flor-Henry, P. (1969). Psychosis and temporal lobe epilepsy. Epilepsia, 10, 363–395.PubMedGoogle Scholar
  47. Flor-Henry, P. (1983). Cerebral basis of psychopathology. Boston: John Wright.Google Scholar
  48. Flournoy, H. (1923). Hallucinations. Encephale, 2, 566–572.Google Scholar
  49. Foulkes, W. D. (1962). Dream reports from different stages of sleep. Journal of Abnormal and Social Psychology, 65, 14–25.PubMedGoogle Scholar
  50. Freedman, S. J. (1961). Perceptual changes in sensory deprivation. Journal of Nervous and Mental Disease, 132, 17–21.PubMedGoogle Scholar
  51. Fried, I., Mateer, C., Ojemann, G., Wohns, R., and Fedio, P. (1982). Organization of visuospatial functions in human cortex. Brain, 105, 349–371.PubMedGoogle Scholar
  52. Geffen, G., and Bradshaw, J. L., and Wallace, G. (1971). Interhemispheric effects on reaction time to verbal and nonverbal visual stimuli. Journal of Experimental Psychology, 87, 415–422.PubMedGoogle Scholar
  53. Geschwind, N., and Levitsky, W. (1968). Human brain: Left-right asymmetries in temporal speech regions. Science, 161, 186–187.PubMedGoogle Scholar
  54. Gibbs, A. F. (1951). Ictal and non-ictal psychiatric disorders in temporal lobe epilepsy. Journal of Nervous and Mental Disease, 113, 522–528.PubMedGoogle Scholar
  55. Gloor, P. (1972). Temporal lobe epilepsy. In B. E. Elftheriou (Ed.), The neurobiology of the amygdala (pp. 212–275 ). New York: Plenum.Google Scholar
  56. Gloor, P., Olivier, A., Quesney, L. F., et al: (1982). The role of the limbic system in experimental phenomena of temporal lobe epilepsy. Annals of Neurology, 12, 129–144.PubMedGoogle Scholar
  57. Goldstein, L., Stoltzfus, N. W., and Gardocki, J. F. (1972). Changes in interhemispheric amplitude relationships in the EEG during sleep. Physiology and Behavior, 8, 811–815.PubMedGoogle Scholar
  58. Goodenough, D. R., Shapiro, A., Holden, M., and Steinschriber, R. (1959). Comparison of “dreamers” and “non-dreamers”. Journal of Nervous and Mental Disease, 59, 295–302.Google Scholar
  59. Gorelick, P. B., and Ross, E. D. (1987). Journal of Neurology, Neurosurgery and Psychiatry, 37, 727–737.Google Scholar
  60. Green, G. L., and Lessel, S. (1977). Acquired cerebral dyschromatopsia. Archives of Ophthamology, 95, 12 1128.Google Scholar
  61. Gross, C. G., and Mishkin, M. (1977). The neural basis of stimulus equivalence across retinal translation. In S. Hamad, et al. (Eds.), Lateralization in the nervous system. New York: Academic Press.Google Scholar
  62. Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96–111.PubMedGoogle Scholar
  63. Halgren, E., Babb, T. L., and Crandall, P. H. (1978). Activity of human hippocampal formation and amygdala neurons during memory tests. Electroencephalography and Clinical Neurophysiology, 45, 585–601.PubMedGoogle Scholar
  64. Heath, R. (1954). Studies in schizophrenia. Cambridge, MA: Harvard University Press.Google Scholar
  65. Heath, R. (1964). Pleasure response of human subjects to direct stimulation of the brain. In R. G. Heath (Ed.), The role of pleasure in behavior (pp. 121–170 ). New York: Harper and Row.Google Scholar
  66. Hecaen, H., and Albert, M. L. (1978). Human neuropsychology. New York, John Wiley and Sons.Google Scholar
  67. Hecaen, H., and Angelergues, R. (1962). Agnosia for faces (prospagnosia). Archives of Neurology, 7, 92–100.PubMedGoogle Scholar
  68. Hermann, B. P., and Chambria, S. (1980). Interictal psychopathology in patients with ictal fear. Archives of Neurology, 37, 667–668.PubMedGoogle Scholar
  69. Hillbom, E. (1951). Schizophrenia-like psychoses after brain trauma. Acta Psychiatrica, 60, 36–47.Google Scholar
  70. Hillbom, E. (1960). After-effects of brain injuries. Acta Psychiatrica Scandinavica (Suppl.) 142, 1–183.Google Scholar
  71. Hodoba, D. (1986). Paradoxic sleep facilitation by interictal epileptic activity of right temporal origin. Biological Psychiatry, 21, 1267–1278.PubMedGoogle Scholar
  72. Hoffman, R. E. (1986). Verbal hallucinations and language production processes in schizophrenia. Behavioral and Brain Sciences, 9, 503–548.Google Scholar
  73. Hoffman, R., Stopek, S., and Andreasen, N. (1986). A discourse analysis comparing manic versus schizophrenic speech disorganization. Archives of General Psychiatry, 43, 831–838.PubMedGoogle Scholar
  74. Horowitz, M. J., Adams, J. E., and Rutkin, B. B. (1968). Visual imagery on brain stimulation. Archives of General Psychiatry, 19, 469–486.PubMedGoogle Scholar
  75. Hubel, D. H., Calvin, O. H., Rupert, A., and Galambos, R. (1959). Attention units in the auditory cortex. Science, 129, 1279–1280.PubMedGoogle Scholar
  76. Ingvar, D. H., and Franzen, G. (1974). Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica, 50, 425–462.PubMedGoogle Scholar
  77. Jensen, I., and Larsen, J. K. (1979). Psychoses in drug-resistant temporal lobe epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 42, 948–954.Google Scholar
  78. Jones, E. G., and Powell, T. P. S. (1970). An antomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 93, 793–820.PubMedGoogle Scholar
  79. Joseph, R. (1982). The neuropsychology of development: Limbic language, hemispheric laterality, and the origin of thought. Journal of Clinical Psychology, 38, 4–33.PubMedGoogle Scholar
  80. Joseph, R. (1986). Reversal of cerebral dominance for language and emotion in a corpus callostomy patient. Journal of Neurology, Neurosurgery and Psychiatry, 49, 628–634.Google Scholar
  81. Joseph, R. (1988). The right cerebral hemisphere. Journal of Clinical Psychology, 44, 630–673.PubMedGoogle Scholar
  82. Joseph, R. (1989). The limbic system. Emotion, laterality, unconscious mind. Psychoanalytic Review Google Scholar
  83. Kimura, D. (1961). Cerebral dominance and the perception of verbal stimuli. Canadian Journal of Psychology, 15, 156–171.PubMedGoogle Scholar
  84. Kimura, D. (1963). Right temporal lobe damage: Perception of unfamiliar stimuli after damage. Archives of Neurology, 18, 264–271.Google Scholar
  85. Kimura, D., and Folb, S. (1968). Neural processing of backward speech sounds. Science, 161, 395–396.PubMedGoogle Scholar
  86. Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E. (1965). Occipitotemporal corticocortical connections in the Rhesus monkey. Experimental Neurology, 11, 245–262.PubMedGoogle Scholar
  87. Landis, T., Cummings, J. L., Christen, L., Bogen, J. E., and Imhof, H-G (1986). Are unilateral right posterior cerebral lesions sufficient to cause prosopagnosia? Clinical and radiological findings in six additional patients. Cortex, 22, 243–252.PubMedGoogle Scholar
  88. Lansdell, H. (1968). Extent of temporal lobe albations on two lateralized deficits. Physiology and Behavior, 3, 271–273.Google Scholar
  89. Lansdell, H. (1970). Relation of extent of temporal removal to closure and visuomotor factors. Perceptual and Motor Skills, 31, 491–498.PubMedGoogle Scholar
  90. Levine, D. N. (1978). Prosopagnosia and visual object agnosia: A behavioral study. Brain and Language, 5, 341–365.PubMedGoogle Scholar
  91. Levy, J. (1974). Psychological implications of bilateral asymmetry. In S. Diamond and J. G. Beaumont (Eds.), Hemisphere function in the human brain (pp. 127–183 ). London: Paul Elek.Google Scholar
  92. Levy, J., Trevarthen, C., and Sperry, R. W. (1972). Perception of bilateral chimeric figures following hemispheric deconnection. Brain, 95, 61–78.PubMedGoogle Scholar
  93. Ley, R. G., and Bryden, M. P. (1979). Hemispheric differences in processing emotions and faces. Brain and Language, 7, 127–138.PubMedGoogle Scholar
  94. Lilly, J. C. (1956). Mental effects of reduction of ordinary levels of physical stimuli on intact, healthy persons. Psychiatric Research Reports, 5, 1–9.PubMedGoogle Scholar
  95. Lilly, J. C. (1972). The center of the cyclone. New York: Julian Press.Google Scholar
  96. Lindsley, D. (1961). Common factors in sensory deprivation. In P. Solomon (Ed.), Sensory deprivation (pp. 27–52 ). Cambridge, MA: Harvard University Press.Google Scholar
  97. Luria, A. (1973). The working brain. New York: Basic Books.Google Scholar
  98. Luria, A. (1980). Higher cortical functions in man. New York: Basic Books.Google Scholar
  99. Malh, G. F., Rothenberg, A., Delgado, J. M. R., and Hamlin, H. (1964). Psychological resposne in the human to intracerebral electrical stimulation. Psychosomatic Medicine, 26, 337–368.Google Scholar
  100. Marzi, I. A., and Berlucchi, G. (1977). Right visual field superiority for accuracy of recognition of famous faces in normals. Neuropsychologia, 15, 751–756.PubMedGoogle Scholar
  101. Matthews, W. S., Barbas, G., and Ferrari, M. (1982). Emotional concomitants of childhood epilepsy. Epilepsia, 23, 671–681.PubMedGoogle Scholar
  102. Maunsell, J. H. R., and Van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque. Journal of Neurophysiology, 49, 1127–1165.PubMedGoogle Scholar
  103. Meadows, J. C. (1974). The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery and Psychiatry, 37, 489–501.Google Scholar
  104. Mendez, M. F., and Geehand, G. R. (1988). Journal of Neurology, Neurosurgery and Psychiatry, 51, 1–9.Google Scholar
  105. Merzenich, M. M., and Brugge, J. F. (1973). Representation of the cochlear partition of the superior temporal plan of teh macaque monkey. Brain Research, 50, 275–296.PubMedGoogle Scholar
  106. Meyer, J. S., Ishikawa, Y., Hata, T., and Karacan, I. (1987). Cerebral blood flow in normal and abnormal sleep and dreaming. Brain and Cognition, 6, 266–294.PubMedGoogle Scholar
  107. Meyer, V., and Yates, A. (1955). Intellectual changes following temporal lobecotomy for pschomotor epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 18, 44–52.Google Scholar
  108. Mills, L., and Rollman, G. B. (1980). Hemispheric asymmetry for auditory perception of temporal order. Neuropsychologia, 18, 41–47.PubMedGoogle Scholar
  109. Milner, B. (1958). Psychological defects produced by temporal lobe excisions. Research Publication of the Association for Research in Nervous and Mental Disease, 36, 244–257.Google Scholar
  110. Milner, B. (1962). Laterality effect in audition. In V. Mountcastle (Ed.), Interhemispheric relations and cerebral dominance (pp. 44–82 ). Baltimore: John Hopkins University Press.Google Scholar
  111. Milner, B. (1968). Visual recognition and recall after right temporal lobe excision in man. Neuropsychologia, 6, 191–209.Google Scholar
  112. Milner, B. (1974). Hemispheric specialization: Scope and limits. In F. E. Schmitt and F. G. Worden (Eds.), The neurosciences. Third study program (pp. 215–231 ). Cambridge, MA: MIT Press.Google Scholar
  113. Milner, B., and Teuber, H. L. (1968). Alteration of perception and memory in man. In L. Weiskrantz (Ed.), Analysis of behavioral changes (pp. 107–130 ). New York: Harper and Row.Google Scholar
  114. Mishkin, M. (1972). Cortical visual areas and their interaction. In A. G. Karczman and J. C. Eccles (Eds.), Brain and human behavior (pp. 57–93 ). Berlin: Springer-Verlag.Google Scholar
  115. Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature (London) 273, 297–299.Google Scholar
  116. Morihisa, A., Duffy, F. H., and Wyatt, R. J. (1983). Brain electrical activity mapping (BEAM) in schizophrenic patients. Archives of General Psychiatry, 40, 719–728.PubMedGoogle Scholar
  117. Monroe, B., Rechtschaffen, A., Foulkes, D., and Jensen, J. (1965). Discriminability of REM and NREM reports. Personality and Social Psychology, 2, 456–460.Google Scholar
  118. Morstyn, R., Duffy, F. H., and McCarley, R. (1983). Altered topography of EEG spectral content in schizophrenia. Electroenecephalograpy and Clinical Neurophysiology, 56, 263–271.Google Scholar
  119. Mullan, S., and Penfield, W. (1959). Epilepsy and visual hallucinations. Archives of Neurology and Psychiatry, 81, 269–281.PubMedGoogle Scholar
  120. Myers, R. E. (1959). Interhemispheric communication through the corpus callosum: Limitations under conditions of conflict. Journal of Comparative and Physiological Psychology, 52, 6–9.PubMedGoogle Scholar
  121. Novelly, R. J., and Joseph, R. (1983). Complex partial epilepsy of early development: Gender specific effects on IQ with right hemisphere speech, In 15th Annual Epilepsy International Symposium, September (p. 53 ).Google Scholar
  122. Offen, M. L., Davidoff, R. A. Troost, B. T., and Richey, E. T. (1976). Dacrystic epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 39, 829–834.Google Scholar
  123. Ojemann, G. A., Blick, K. I., and Ward, A. A. (1971). Improvement and disturbance of short-term verbal memory with human ventrolateral stimulation. Brain, 94, 225–240.PubMedGoogle Scholar
  124. Ojemann, G. A. Fedio, P., and van Buren, J. (1968). Anomia from pulvinar and subcortical parietal stimulation. Brain, 91, 99–116.PubMedGoogle Scholar
  125. Ojemann, G. A., and Fedio, P. (1968). Effect of stimulation of the human thalamus, parietal, and temporal white matter on short-term memory. Journal of Neurosurgery, 29, 51–59.PubMedGoogle Scholar
  126. Pandya, D. N., and Kuypers, H. G. J. M. (1969). Corticocortical connections in the rhesus monkey. Brain Research, 13, 13–36.PubMedGoogle Scholar
  127. Papcun, G., Krashen, S., Terbeek, D. (1974). Is the left hemisphere specialized for speech, language and/or something else. Journal of the Acoustical Society of America, 55, 319–327.PubMedGoogle Scholar
  128. Penfield, W., and Evans, J. (1934). Functional defects produced by cerebral lobectomies. Publication of the Association for Research in Nervous and Mental Disease, 13, 352–377.Google Scholar
  129. Penfield, W., and Jasper, H. (1954). Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown.Google Scholar
  130. Penfield, W., and Perot, P. (1963). The brain’s record of auditory and visual experience. Brain, 86, 595–696.PubMedGoogle Scholar
  131. Penfield, W., and Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. New York: Macmillan.Google Scholar
  132. Perez, M. M., and Trimble, M. R. (1980). Epileptic psychosis-Diagnostic comparison with process schizophrenia. British Journal of Psychiatry, 137, 245–249.PubMedGoogle Scholar
  133. Pesme, P. (1939). Auditory hallucinations in a deaf person. Review of Neuropathology and Ophthamalogy, 17, 280–291.Google Scholar
  134. Redlich, F. C., and Dorsey, J. E. (1945). Denial of blindness by patients with cerebral disease. Archives of Neurology and Psychiatry, 53, 407–417.Google Scholar
  135. Reinhold, M. (1950). A case of pure auditory agnosia. Brain, 73, 203–223.PubMedGoogle Scholar
  136. Rhein, J. H. W. (1913). Hallucinations of hearing and diseases of the ear. New York Medical Journal, 97, 1236–1238.Google Scholar
  137. Richmond, B. J., Optican, L. M., Podel, M., and Spitzer, H. (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. Journal of Neurophysiology, 57, 132–162.PubMedGoogle Scholar
  138. Richmond, B. J., Wurtz, R. H., and Sato, T. (1983). Visual responses of inferior temporal neurons in awake rhesus monkey. Journal of Neurophysiology, 50, 1415–1432.PubMedGoogle Scholar
  139. Rocha-Miranda, C. E. Bender, D. B., Gross, C. G., and Mishkin, M. (1975). Visual activation of neruons in the inferior-temporal cortex depends on striate cortex and forebrain commissures. Journal of Neurophysiology, 38, 475–491.Google Scholar
  140. Ross, E. (1981). The aprosodias: Functional-anatomic organization of the affective components of language in the right hemisphere. Archives of Neurology, 38, 561–589.PubMedGoogle Scholar
  141. Ross, E. D., Jossman, P. B., Bell, B. et al. (1975). Musical halucinations in deafness. Journal of the American Medical Association, 231, 620–622.PubMedGoogle Scholar
  142. Rozanski, J., and Rosen, H. (1952). Musical hallucinosis in otosclerosis. Cinfina Neurologica, 12, 49–54.Google Scholar
  143. Rutter, D. (1979). The reconstruction of schizophrenic speech. British Journal of Psychiatry, 134, 356–359.PubMedGoogle Scholar
  144. Sanchez-Longo, L. P., and Forster, F. M. (1958). Clinical significance of impairment of sound localization. Neurology (New York), 8, 119–125.Google Scholar
  145. Schiff, H. B., Sabin, T. D., Geller, A., et al. (1982). Lithium in aggressive behaivor. American Journal of Psychiatry, 139, 1346–1348.Google Scholar
  146. Seltzer, B., and Pandya, D. N. (1978). Afferent cortical connections and architectonics of the superior temproal sulcus and surrounding cortex in the rhesus monkey. Brain Research, 149, 1–24.PubMedGoogle Scholar
  147. Semrad, E. V. (1938). Study of the auditory apparatus in patients experiencing auditory hallucinations. American Journal of Psychiatry, 95, 53–63.Google Scholar
  148. Serafetinides, E. A. (1965). The significance of the temporal lobes and of hemisphere dominance in the production of the LSD-25 symptomology in man. Neuropsychologia, 3, 69–79.Google Scholar
  149. Sethi, P. K., and Rao, S. T. (1976). Gelastic, quiritarian, and cursive epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 39, 823–828.Google Scholar
  150. Shankweiler, D. (1961). Performance of brain-damaged patients on two tests of sound localization. Journal of Comparative and Physiological Psychology, 54, 375–381.Google Scholar
  151. Shankweiler, D. (1966). Effects of temporal lobe damage on the perception of dichotically prsented melodies. Journal of Comparative and Physiological Psychology, 62, 115–122.PubMedGoogle Scholar
  152. Shankweiler, D., and Studdert-Kennedy, M. (1966). Lateral differences in perception of dichotically presented synthetic consonant-vowel syllables and steady-state vowels. Journal of the Acoustic Society of America, 39, 1256A.Google Scholar
  153. Shankweiler, D., and Studdert-Kennedy, M. (1967). Identification of consonants and vowels presented to left and right ears. Quarterly Journal of Experimental Psychology, 19, 59–63.PubMedGoogle Scholar
  154. Sherwin, I. (1977). Clinical and EEG aspects of temporal lobe epilepsy with behavior disorder. McLean Hospital Journal, 12, 40–50.Google Scholar
  155. Sherwin, I. (1981). Psychosis associated with epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 44, 83–85.Google Scholar
  156. Sherwin, I., Peron-Magnana, P., Bancard, J. (1982). Prevalence of psychosis in epilepsy as a function of the laterality of the epileptogenic lesion. Archives of Neurology, 39, 621–625.PubMedGoogle Scholar
  157. Shurley, J. (1960). Profound experimental sensory isolation. American Journal of Psychiatry, 117, 539–545.Google Scholar
  158. Squire, L. (1987). Memory and brain. New York: Oxford University Press.Google Scholar
  159. Stevens, J. R., Bigelow, L., Denney, D. (1979). TeleMetered EEG in schizophrenia. Journal of Neurology, Neurosurgery and Psychiatry, 36, 251–262.Google Scholar
  160. Strauss, E., Risser, A., and Jones, M. W. (1982). Fear responses in patients with epilepsy. Archives of Neurology, 39, 626–630.PubMedGoogle Scholar
  161. Studdert-Kennedy, M., and Shankweiler, D. (1970). Hemispheric specialization for speech perception. Journal of the Acoustical Society of America, 48, 579–594.PubMedGoogle Scholar
  162. Swerdlow, N. R., and Koob, G. F. (1987). Dopamine, schizophrenia, mania, and depression. Behavioral and Brain Sciences, 10, 197–245.Google Scholar
  163. Tarachow, S. (1941). The clinical value of hallucinations in localizing brain tumors. American Journal of Psychiatry, 99, 1434–1442.Google Scholar
  164. Taylor, D. C. (1969). Aggression and epilepsy. Journal of Psychosomatic Research, 13, 229–236.PubMedGoogle Scholar
  165. Taylor, D. C. (1972). Mental state and temporal lobe epilepsy. Epilepsia, 13, 727–765.PubMedGoogle Scholar
  166. Taylor, D. C. (1975). Factors influencing the occurrence of schizophrenia-like psychosis in patients with temporal lobe epilepsy. Psychological Medicine, 5, 429–254.Google Scholar
  167. Tigges, J., Tigges, M., Anschell, S. (1981). Areal and laminar distribution of neurons interconnecting the central visual cortical areas, 17, 18, 19 and MT. Journal of Comparative Neurology, 202, 539–560.PubMedGoogle Scholar
  168. Wada, J., Clarke, R., and Hamm, A. (1975). Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adults and 100 infant brains. Archives of Neurology, 32, 239–246.PubMedGoogle Scholar
  169. Wall, J. T., Symonds, L. L., and Kaas, J. H. (1982). Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos. Journal of Comparative Neurology, 211, 193–214.PubMedGoogle Scholar
  170. Weil, A. A. (1956). Ictal depression and anxiety in temporal lobe disorders. American Journal of Psychiatry, 113, 149–157.PubMedGoogle Scholar
  171. Weinberger, D. R., Berman, K. F., and Zek, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 114, 114–125.Google Scholar
  172. Weingartner, H. (1968). Verbal learning in patients with temporal lobe lesions. Journal of Verbal Learning and Verbal Behavior, 7, 520–526.Google Scholar
  173. Weiskrantz, L., and Mishkin, M. (1958). Effect of temporal and frontal cortical lesions on auditory functions in monkey. Brain, 81, 233–275.Google Scholar
  174. Whiteley A. M., and Warrington, E K. (1977). Prosopagnosia: A clinical, psychological and anatomical study of three patients. Journal of Neurology, Neurosurgery and Psychiatry, 40, 395–403.Google Scholar
  175. Williams, D. (1956). The structure of emotions reflected in epileptic experience. Brain, 79, 29–67.PubMedGoogle Scholar
  176. Wollberg, Z., and Newman, V. D. (1972). Auditory cortex of squirrel monkey. Science, 175, 212–214.PubMedGoogle Scholar
  177. Woolsey, C. N., and Fairman, D. (1946). Contralteral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex. Surgery, 19, 684–702.PubMedGoogle Scholar
  178. Wolpert E. A., and Trosman, H. (1958). Studies in psychophysiology of dreams. I. Experimental evocation of sequential dream episodes. Archives of Neurology, 79, 603–606.Google Scholar
  179. Zeki, S. M. (1978b). The cortical projections of fovea] striate cortex in the rhesus monkey. Journal of Physiology, 277, 227–244.PubMedGoogle Scholar
  180. Zuckerman, M., and Cohen, N. (1964). Sources of reports of visual and auditory sensations in perceptual-isolation experiments. Psychological Bulletin, 62, 1034–1956.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Rhawn Joseph
    • 1
  1. 1.Neurobehavioral CenterSanta ClaraUSA

Personalised recommendations