The Frontal Lobes

Neuropsychiatry, Neuropsychology, and Behavioral Neurology
  • Rhawn Joseph
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

The frontal lobes serve as the “senior executive” of the brain; through the assimilation and fusion of perceptual, volitional, cognitive, and emotional processes, it modulates and shapes character and personality. When damaged, the result can be excessive or diminished cortical and behavioral arousal, disintegration of personality and emotional functioning, difficulty planning or initiating activity, abnormal attention and ability to concentrate, severe apathy or euphoria, disinhibition, and a reduced ability to monitor and control one’s thoughts, speech, and actions. Paralysis of the extremities, severe unilateral neglect of visual—auditory space, or, conversely, compulsive utilization of tools or other objects can occur.

Keywords

Frontal Lobe Supplementary Motor Area Medial Wall Frontal Lesion Orbital Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerly, S. S. (1935). Instinctive emotional and mental changes following pre-frontal lobe extirpation. American Journal of Psychiatry, 92, 717–727.Google Scholar
  2. Adams, R. D., and Victor, M. (1981). Principles of neurology. New York: McGraw-Hill.Google Scholar
  3. Alexander, M. P., Stuss, D. T., and Benson, D. F. (1979). Capgras syndrome: A reduplicative phenomenon. Neurology (New York), 29, 334–339.Google Scholar
  4. Anand, B. K., Dua, S., and China, G. S. (1958). Higher nervous control over food intake. Indian Journal of Medical Research, 46, 277–287.PubMedGoogle Scholar
  5. Ariel, R. N., Golden, C. J., Berg, R. A., Quaife, M. A., Dirksen, J. W., Forsell, T., Wilson, J., and Graber, B. (1983). Regional blood flow in schizophrenia. Archives of General Psychiatry, 40, 258–263.PubMedGoogle Scholar
  6. Astruc, J. (1971). Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta. Brain Research, 33, 241–256.Google Scholar
  7. Bailey, P., and Sweet, W. H. (1940). Effects on respiration, blood pressure and gastric motility of stimulation of orbital surface of frontal lobes. Journal of Neurophysiology, 3, 276–281.Google Scholar
  8. Baleydier, C., and Maguiere, F. (1980). The duality of the cingulate gyms of the monkey. Brain 103, 525–554. Barbas, H., and Dubrovsky, B. (1981). Excitatory and inhibitory interactions of extraocular and dorsal neck muscle afferents in the cat frontal cortex. Experimental Neurology, 74, 51–66.Google Scholar
  9. Barbas, H., and Mesulam, M. M. (1981). Organization of afferent input to subdivision of area 8 in the rhesus monkey. Journal of Comparative Neurology, 200, 407–431.PubMedGoogle Scholar
  10. Barris, R. W., and Schuman, H. R. (1953). Bilateral anterior cingulate gyms lesions: Syndrome of the anterior cingulate gyri. Neurology (New York), 3, 44–52.Google Scholar
  11. Batuyev, A. S. (1969). The frontal lobes and the processes of synthesis in the brain. Brain Behavior and Evolution, 2, 202–212.Google Scholar
  12. Benson, D. F. (1967). Fluency in aphasis correlation with radioactive scan localization. Cortex, 3, 373–394. Benson, D. F., Gardner, H., and Meadows, J. C. (1976). Reduplicative paramnesia. Neurology (New York), 26, 147–151.Google Scholar
  13. Benson, D. F., and Geschwind, N. (1971). Psychiatric conditions associated with focal lesions of the central nervous system. In S. Arieti and M. Reiser (Eds.), American handbook of psychiatry (Vol. 4, pp. 208–243 ). New York: Basic Books.Google Scholar
  14. Bianchi, L. (1922). The mechanism of the brain and the function of the frontal lobes. Edinburgh: Livingstone.Google Scholar
  15. Blumer, D., and Benson, D. F. (1975). Personality changes with frontal and temporal lesions. In D. F. Benson andGoogle Scholar
  16. D. Blumer (Eds.), Psychiatric aspects of neurologic disease. Orlando, FL: Grune and Stratton. Blumstein, S. E., Alexander, M. P., Ryalls, J. H., Katz, W., and Dworetzky, B. (1987). On the nature of the foreign accent syndrome: A case study. Brain and Language, 31, 215–244.Google Scholar
  17. Bogousslaysky, J., Ferrazzini, M., Regli, F., Assal, G., Tanabe, H., and Delaloye-Bischof, A. (1988). Manic delirium and frontal-like syndrome with paramedian infarction of the right thalamus. Journal of Neurology, Neurosurgery and Psychiatry, 51, 116–119.Google Scholar
  18. Bradford, R. (1950). Nursing procedures and problems. In M. Greenblatt, R. Amot, and H. C. Solomon (Eds.), Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  19. Brinkman, C. (1981). Lesions in supplementary motor area interfere with a monkey’s performance on a bimanual coordination task. Neuroscience Letters, 27, 267–270.PubMedGoogle Scholar
  20. Brinkman, C., and Porter, R. (1979). Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task. Journal of Neurophysiology, 42, 681–709.PubMedGoogle Scholar
  21. Brodal, A. (1981). Neurological anatomy. New York: Oxford University Press.Google Scholar
  22. Broffman, M. (1950). The lobotomized patient during the first year at home. In M. Greenblatt, R. Amot, and H. C. Solomon (Eds.), Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  23. Brutkowski, S. (1965). Functions of prefrontal cortex in animals. Physiological Review, 45, 721–746. Brutkowski, S., Mishkin, M., and Rosvold, H. E. (1963). Positive and inhibitory motor CRs in monkeys afterGoogle Scholar
  24. ablation of orbital or dorsolateral surface of the frontal cortex. In E. Guttman and P. Hnik (Eds.), Central and peripheral mechanisms of motor functions (pp. 133–141).Google Scholar
  25. Prague: Czechoslovak Academy of Science. Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiology and Behavior, 4, 163–171.Google Scholar
  26. Butter, C. M., Mishkin, M., and Mirsky, A. F. (1968). Emotional response toward humans in monkeys with selective frontal lesions. Physiology and Behavior, 3, 213–215.Google Scholar
  27. Butter, C. M., Mishkin, M., and Rosvold, H. L. (1963). Conditioning and extinction of food rewarded responses after selective ablations of frontal cortex in the rhesus monkey. Experimental Neurology, 7, 65–75.PubMedGoogle Scholar
  28. Butter, C. M., and Snyder, D. R. (1972). Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiologica Experimentalis, 32, 525–566.Google Scholar
  29. Butter, C. M., Snyder, D. R., and McDonald, J. A. (1970). Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. Journal of Comparative and Physiological Psychology, 72, 13 2144.Google Scholar
  30. Cavada, C. (1984). Transcortical sensory pathways to the prefrontal cortex with special attention to the olfactory and visual modalities. In F. Reinoso-Suarez and Ajmone-Marsan (Eds.), Cortical integration (pp. 317–328 ). New York: Raven Press.Google Scholar
  31. Chapman, W. P., Livingston, R., and Livingston, K. E. (1950). The effects of lobotomy and of electrical stimulation of the orbital surface of the frontal lobe upon respiration and blood pressure in man. In M. Greenblatt, R. Amot, and H. C. Solomon (Eds.), Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  32. Chen, R., and Foster, F. N. (1973). Cursive and gelastic epilepsy. Neurology (New York), 23, 1019–1029.Google Scholar
  33. Chi, C. C. (1970). An experimental silver study of the ascending projections of the central gray substance and adjacent tegmentum in the rat with observation in the cat. Journal of Comparative Neurology, 139, 259–273.PubMedGoogle Scholar
  34. Clark, A. F., and Davison, K. (1987). Mania following head injury. British Journal of Psychiatry, 150, 841–844.PubMedGoogle Scholar
  35. Clemente, C. D., Chase, M. H., Knauss, T. K., Sauerland, E. K., and Sterman, M. B. (1964). Inhibition of a monosynaptic reflex by electrical stimulation of the basal forebrain or the orbital gyms in the cat. Experientia, 22, 844–845.Google Scholar
  36. Cohen, M. R., and Niska, R. W. (1980). Localized right cerebral hemisphere dysfunction and recurrent mania. American Journal of Psychiatry, 137, 847–848.Google Scholar
  37. Crocket, D., Bilsker, D., Hurwitz, T., and Kozak, J. (1986). Clinical utility of three measures of frontal lobe dysfunction in neuropsychiatric samples. Internal Journal of Neuroscience, 30, 241–248.Google Scholar
  38. Crowne, D. P. (1983). The frontal eye field and attention. Psychological Bulletin, 93, 232–260.PubMedGoogle Scholar
  39. Cummings, J. L., and Mendez, M. F. (1984). Secondary mania with focal cerebrovascular lesions. American Journal of Psychiatry, 41, 1084–1087.Google Scholar
  40. Daly, D., and Moulder, D. (1957). Gelastic epilepsy. Neurology (New York), 7, 26–36.Google Scholar
  41. Damasio, A. R., Damasio, H., and Chui, H. C. (1980). Neglect following damage to frontal lobe or basal ganglia. Neuropsychologia, 18, 123–132.PubMedGoogle Scholar
  42. Damasio, A. R., and Van Hoesen, G. W. (1980). Structure and function of the supplementary motor area. Neurology (New York), 30, 359.Google Scholar
  43. Dax, E. D., Reitman, F., and Radley-Smith, E. (1948). Prefrontal leucotomy. Digest of Neurology and Psychiatry, 16, 533–534.Google Scholar
  44. Delaney, R. C., Rosen, A. J., Mattson, R. H., and Novelly, R. A. (1980). Memory function in focal epilepsy: AGoogle Scholar
  45. comparison of non-surgical unilateral temporal lobe and frontal lobe samples. Cortex, 16,103–117.Google Scholar
  46. d’Elia, G., and Penis, C. (1974). Cerebral functional dominance and memory functioning. Acta Psychiatrica Scandinavica, 155, 143–157.Google Scholar
  47. Delgado, J. M. R., and Livingston, R. B. (1948). Some respiratory, vascular, and thermal responses from stimulation of the orbital surface of frontal lobe. Journal of Neurophysiology, 11, 39–55.PubMedGoogle Scholar
  48. Denny-Brown, D. (1958). The anture of apraxia. Journal of Nervous and Mental Disease, 126, 15–56.Google Scholar
  49. Denny-Brown, D. (1966). The cerebral control of movement. Liverpool: Liverpool University Press. DeRenzi, E., and Faglíoni, P. (1965). The comparative efficiency of intelligence and vigilance tests detecting hemisphereic damage. Cortex, 1, 410–433.Google Scholar
  50. DeRenzi, E., Pieczuro, A., and Vignolo, L. A. (1966). Oral apraxia and aphasia. Cortex, 2, 56–73. Desmedt, J. E. (1977). Active touch exploration of extrapersonal space elicits specific electrogenesis in the rightGoogle Scholar
  51. cerebral hemisphere of intact right-handed man. Proceedings of the National Academy of Science U.S.A 74,4037–4040.Google Scholar
  52. Dimond, S. J. (1976). Depletion of attentional capacity after total commissurotomy in man. Brain, 99, 347356.Google Scholar
  53. Dimond, S. J. (1979). Tactual and auditory vigilance in split-brain man. Journal of Neurology, Neurosurgery and Psychiatry, 42, 70–74.Google Scholar
  54. Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting Task performance. Cortex, 10, 159–170.PubMedGoogle Scholar
  55. Flor-Henry, P., Yeudall, L. T., Koles, J., and Howarth, B. G. (1979). Neuropsychological and power spectralGoogle Scholar
  56. EEG investigations of the obsessive-compulsive syndrome. Biological Psychiatry, 14,119–129.Google Scholar
  57. Forrest, D. V. (1982). Bipolar illness after right hemispherectomy. Archives of General Psychiatry, 39, 817–819.PubMedGoogle Scholar
  58. Freeman, W., and Watts, J. W. (1942). Psychosurgery. Springfield: Charles C Thomas.Google Scholar
  59. Freeman, W., and Watts, J. W. (1943). Prefrontal lobotomy. American Journal of Psychiatry, 99, 798–806. French, G. M. (1959). A deficit associated with hypermotility in monkeys with lesions of the dorsolateral frontal granular cortex. Journal of Comparative and Physiological Psychology, 52, 25–28.Google Scholar
  60. French, J. D. (1964). The frontal lobes and association. In J. M. Warren and K. Akert (Eds.), The frontal granular cortex and behavior (pp. 56–74 ). New York: McGraw-Hill.Google Scholar
  61. French, G. M., and Harlow, H. F. (1955). Locomotorreaction decrement in normal and brain-damaged monkeys. Journal of Comparative and Physiological Psychology, 48, 496–501.PubMedGoogle Scholar
  62. Fulton, J. F. (1934). Grasping and groping in relation to the syndrome of the premotor area. Archives of Neurology and Psychiatry, 31, 221–235.Google Scholar
  63. Fulton, J. F., Jacobson, C. F., and Kennard, M. A. (1932). A note concerning the relation of the frontal lobes to posture and forced grasping in monkeys. Brain, 55, 524–536.Google Scholar
  64. Fuster, J. M. (1980). The prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobes. New York: Raven Press.Google Scholar
  65. Fuster, J. M., Bauer, R. H., and Jervey, J. P. (1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology, 77, 679–694.PubMedGoogle Scholar
  66. Gainotti, G. (1972). Emotional behavior and hemispheric side of lesion. Cortex, 8, 41–55. Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 237–294, 585–644. Geschwind, N. (1979). Specialization of the human brain. Scientific American, 241, 180–201.Google Scholar
  67. Girgis, M. (1971). The orbital surface of the frontal lobe of the brain. Acta Psychiatrics Scandinavica (Supplement), 22, 1–58.Google Scholar
  68. Glees, P., Cole, J., Whitty, C. W. M., and Cairns, H. (1950). The effects of lesions in the cingulate gyros and adjacent areas in monkeys. Journal of Neurology, Neurosurgery and Psychiatry, 13, 178–190.Google Scholar
  69. Godschalk, M., Lemon, R. N., Nijis, H. G. T., and Kuypers, H. G. J. M. (1981). Behavior of neurons in monkeys peri-arcuate and precentral cortex before and during visually guided arm and hand movements. Experimental Brain Research, 44, 113–116.Google Scholar
  70. Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypothesis. The Behavioral and Brain Sciences, 8, 567–616.Google Scholar
  71. Goldberg, G., Meyer, N. H., and Toglia, J. U. (1981). Medial frontal cortex infarction and the alien hand sign. Archives of Neurology, 38, 683–686.PubMedGoogle Scholar
  72. Goldman, P. S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Experimental Neurology, 32, 366–387.PubMedGoogle Scholar
  73. Goldman, P. S., Rosvold, H. W., and Mishkin, M. (1970). Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey. Journal of Comparative and Physiological Psychology, 70, 454–463.PubMedGoogle Scholar
  74. Goldstein, K. (1936–37). The significance of the frontal lobes for mental performance. Journal of Neurology and Psychopothology, 17, 27–40.Google Scholar
  75. Goldstein, K. (1944). The mental changes due to frontal lobe damage. Journal of Psychology, 17, 187–208. Goodglass, H., and Berko, J. (1960). Agrammatism and inflectional morphology in English. Journal of Speech and Hearing Research, 3, 257–267.Google Scholar
  76. Goodglass, J., and Kaplan, E. (1972). The assessment of aphasia and related disorders. Philadelphia: Lea and Febiger.Google Scholar
  77. Goodwin, D. W., and Guze, S. B. (1979). Psychiatric diagnosis. New York: Oxford University Press. Gorelick, P. B., and Ross, E. D. (1987). The aprosodias: Further functional-anatomical evidence for the organization of affective language in the right hemisphere. Journal of Neurology, Neurosurgery and Psychiatry, 50, 553–560.Google Scholar
  78. Graff-Radford, N. R., Cooper, W. E., Colsher, P. L., and Damasio, A. R. (1986). An unlearned foreign “accent” in a patient with aphasia. Brain and Language, 28, 86–94.PubMedGoogle Scholar
  79. Grafman, J., Vance, S., Weingartner, H., Salazar, A. M., and Amin, D. (1986). The effects of lateralized frontal lesions on mood regulation. Brain, 109, 1127–1148.PubMedGoogle Scholar
  80. Gray, J. A. (1987). The psychology of fear and stress. New York: Oxford University Press. Greenblatt, M. (1950). Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  81. Gross, C. G., and Weiskrantz, L. (1964). Some changes in behavior produced by lateral frontal lesions in the macaque. In J. M. Warren and K. Akert (Eds.), The frontal granular cortex and behavior (pp. 74–101 ). New York: McGraw-Hill.Google Scholar
  82. Halstead, W. C. (1947). Brain and intelligence. Chicago: University of Chicago Press.Google Scholar
  83. Hamilton, M. (1976). Fish’s schizophrenia. Bristrol: John Wright and Sons.Google Scholar
  84. Hassler, R. (1980). Brain mechanisms of intention and attention with introductory remarks on other volitional processes. Progress in Brain Research, 54, 585–614.PubMedGoogle Scholar
  85. Hebben, N. (1986). The role of the frontal and temporal lobes in the phonetic organizations of speech stimuli: A multidimensional scaling analysis. Brain and Language, 19, 342–357.Google Scholar
  86. Hecaen, H. (1964). Mental changes associated with tumors of the frontal lobes. In J. M. Warren and K. Akert (Eds.), The frontal cortex and behavior (pp. 335–352 ). New York: McGraw-Hill.Google Scholar
  87. Hecaen, J., and Albert, M. L. (1978). Human neuropsychology. New York: John Wiley and Sons.Google Scholar
  88. Heilman, K. M., and Valenstein, E. (1972). Frontal lobe neglect in man. Neurology (New York), 22, 660664.Google Scholar
  89. Heilman, K. M., and Van Den Abell, T. (1979). Right hemispheric dominance for mediating cerebral activation. Neuropsychologia, 17, 315–321.PubMedGoogle Scholar
  90. Heilman, K. M., and Van Den Abell, T. (1980). Right hemisphere dominance for attention. The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology (New York), 30, 327–330.Google Scholar
  91. Ingvar, D. H., and Franzen, G. (1974). Abnormalities of cerebral blood-flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica, 50, 425–462.PubMedGoogle Scholar
  92. Ironside, R. (1956). Disorders of laughter due to brain lesions. Brain, 79, 589–609.PubMedGoogle Scholar
  93. Iversen, S. D., and Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 476–486.Google Scholar
  94. Jack, R. A., Rivers-Bulkley, N. T., and Rabin, P. L. (1983). Seconday mania as a presentation of progressive dialysis encephalopathy. Journal of Nervous and Mental Disease, 171, 193–195.PubMedGoogle Scholar
  95. Jamieson, R. C., and Wells, C. E. (1979). Manic psychosis in a patient with multiple metastic brain tumors. Journal of Clinical Psychiatry, 40, 280–282.PubMedGoogle Scholar
  96. Jeeves, M. A., and Dixon, N. F. (1970). Hemispheric differences in response rates to visual stimuli. Psychonomic Science, 20, 249–251.Google Scholar
  97. Johnson, T. N., Rosvold, H. E., and Mishkin, M. (1968). Projections of behaviorally defined sectors of the prefrontal cortex to the basal ganglia, septum, and diencephalon of the monkey. Experimental Neurology, 21, 20–34.PubMedGoogle Scholar
  98. Jones, B., and Mishkin, M. (1972). Limbic lesions and the problem of stimulus-reinforcement associations. Experimental Neurology, 36, 362–377.PubMedGoogle Scholar
  99. Jones, E. G., Coulter, J. D., and Hendry, S. H. C. (1978). Intracortical connectivity of architectonic fields in the somatic sensory, motor, and parietal cortex of monkeys. Journal of Comparative Neurology, 181, 29 1348.Google Scholar
  100. Jones, E. G., and Powell, T. P. S. (1970). An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 93, 793–820.PubMedGoogle Scholar
  101. Joseph, R. (1982). The neuropsychology of development: Hemispheric laterality, limbic language, and the origin of thought. Journal of Clinical Psychology, 44, 3–33.Google Scholar
  102. Joseph, R. (1986a). Confabulation and delusional denial: Frontal lobe and lateralized influences. Journal of Clinical Psychology, 42, 845–860.Google Scholar
  103. Joseph, R. (1988b). Reversal of dominance for language and emotion in a corpus callosotomy patient. Journal of Neurology, Neurosurgery and Psychiatry, 49, 628–634.Google Scholar
  104. Joseph, R. (1988a). The right cerebral hemisphere: Emotion, music, visual-spatial skills, body-image, dreams and awareness. Journal of Clinical Psychology, 44, 630–673.PubMedGoogle Scholar
  105. Joseph, R. (1988b). Dual mental functioning in a “split-brain” patient. Journal of Clinical Psychology, 44, 770–779.PubMedGoogle Scholar
  106. Joseph, R. (1989). The limbic system. Emotion, laterality, unconscious mind. The Psychoanalytic Review, Jurgens, U., and Muller-Preuss, P. (1977). Convergent projections of different limbic vocalization areas in the squirrel monkey. Experimental Brain Research, 29, 75–83.Google Scholar
  107. Kaada, B. R. (1951). Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalon” and other structures in primates, cat, and dog. Acta Physiologica Scandinavica, 83, 1285.Google Scholar
  108. Kaada, B. R. (1972). Cingulate, posterior orbital, anterior insular and temporal pole cortex. In J. Field, H. W. Magoun, and V. A. Hall (Eds.), Handbook of Physiology (Vol. II, pp. 1345–1372 ). Washington, D.C.: American Physiological Society.Google Scholar
  109. Kapur, N., and Coughlan, A. K. (1980). Confabulation and frontal lobe dysfunction. Journal of Neurology, Neurosurgery and Psychiatry, 43, 461–463.Google Scholar
  110. Kennard, M. A. (1939). Alterations in response to visual stimuli following lesions of frontal lobes in monkeys. Archives of Neurology and Psychiatry, 41, 1153–1165.Google Scholar
  111. Kennard, M. A. (1955). Effects of bilateral ablation of cingulate area on behavior in cats. Journal of Neurophysiology, 18, 159–169.PubMedGoogle Scholar
  112. Kennard, M. A., Spencer, S., and Fountain, G. (1941). Hyperactivity in monkeys following lesions of the frontal lobes. Journal of Neurophysiology, 4, 512–522.Google Scholar
  113. Kling, A., and Mass, R. (1974). Alterations of social behavior with neural lesions in nonhuman primates. In B. Holloway (Ed.), Primate aggression, territoriality, and zenophobia (pp. 361–386 ). Orlando, FL: Academic Press.Google Scholar
  114. Kling, A., and Steklis, H. D. (1976). A neural substrate for affiliative behavior in nonhuman primates. Brain Behavior and Evolution, 13, 216–238.Google Scholar
  115. Knight, R. T., Hillyard, S. A., Woods, D. L., and Neville, H. J. (1981). The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroencephalography and Clinical Neurophysiology, 52, 571–582.PubMedGoogle Scholar
  116. Knuzle, H., and Akert, K. (1977). Efferent connections of cortical area 8 (frontal eye field). Journal of Comparative Neurology, 173, 147–164.Google Scholar
  117. Kolb, B., Nonneman, A. J., and Singh, R. J. (1974). Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. Journal of Comparative and Physiological Psychology, 87, 772–780.PubMedGoogle Scholar
  118. Kolb, B., and Whishaw, I. Q. (1983). Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurological patients. Journal of Nervous and Mental Disease, 171, 435–443.PubMedGoogle Scholar
  119. Kramer, H. C. (1954). Laughing spells in patients after lobotomy. Journal of Nervous and Mental Disease, 140, 517–522.Google Scholar
  120. Krettek, J. E., and Price, J. L. (1974). A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Research, 67, 169–174.PubMedGoogle Scholar
  121. Kuypers, H. G. J. M. (1958). Corticobulbar connexions to the pons and lower brain stem in man. Brain, 81, 364–388.PubMedGoogle Scholar
  122. Kuypers, H. G. J. M., and Catsman-Berrevoets, C. E. (1984). Frontal corticosubcortical projections and their cells of origin. In F. Reinoso-Suarez and C. Ajmone-Marsan (Eds.), Cortical integration (pp. 171–194 ). New York: Raven Press.Google Scholar
  123. Langworthy, O. R., and Richter, C. P. (1939). Increased activity produced by frontal lobe lesions in cats. American Journal of Physiology, 126, 158–161.Google Scholar
  124. Laplane, D., Degos, J. D., Baulac, M., and Gray, F. (1981). Bilateral infarction of the anterior cingulate gyri and of the fomices. Journal of Neurological Sciences, 51, 289–300.Google Scholar
  125. Laplane, D., Talairach, J., Meininger, V., Bancaud, J., and Orgogozo, J. M. (1977). Clinical consequences of cortisectomies involving the supplementary motor area in man. Journal of the Neurological Sciences, 34, 301–314.PubMedGoogle Scholar
  126. Latto, R., and Cowey, A. (1971a). Fixation changes after frontal eye-field lesions in monkeys. Brain Research, 30, 25–36.Google Scholar
  127. Latto, R., and Cowey, A. (1971b). Visual field defect after frontal eye field lesions in monkeys. Brain Research, 30, 1–24.PubMedGoogle Scholar
  128. Leichnetz, G. R., and Astruc, J. (1976). The different projections of the medical prefrontal cortex in the squirrel monkey (Saimiri sciureus). Brain Research, 109, 455–472.PubMedGoogle Scholar
  129. Lesser, R. P., Lueders, H., Dinner, D. S., Hahn, J., and Cohen, L. (1984). The location of speech and writing function in the frontal language area. Brain, 107, 275–291.Google Scholar
  130. Levin, S. (1984). Frontal lobe dysfunction in schizophrenia. I and II. Journal of Psychiatric Research, 18, 2755, 57–72.PubMedGoogle Scholar
  131. Levine, D. N., and Sweet, E. (1982). The neuropathologic basis of Broca’s aphasia and its implications for the cerebral control of speech. In M. Arbib, D. Caplan, and J. Marshall (Eds.), Neural models of language processes. Orlando, FL: Academic Press.Google Scholar
  132. Levine, D. N., and Sweet, E. (1983). Localization of lesions in Broca’s motor aphasia. In A. Kertesz (Ed.), Localization in neuropsychology. Orlando, FL: Academic Press.Google Scholar
  133. Lhermitte, F. (1983). “Utilization behaviour” and its relation to lesions of the frontal lobes. Brain, 106, 237255.Google Scholar
  134. Lineberry, C. G., and Siegel, J. (1971). EEG synchronization, behavioral inhibition, and mesencephalic unit effect produced by stimulation or orbital cortex, basal forebrain and caudate nucleus. Brain Research, 34, 143–161.PubMedGoogle Scholar
  135. Lishman, W. A. (1968). Brain damage in relation to psychiatric disability after head injury. British Journal of Psychiatry, 114, 373–410.PubMedGoogle Scholar
  136. Lishman, W. A. (1973). The psychiatric sequelae of head injury: A review. Psychological Medicine, 3, 304318.Google Scholar
  137. Livingston, R., Chapman, W., and Livingston, K. (1948). Stimulation of orbital surface of man prior to lobotomy. Research publication: The frontal lobes (pp. 421–433 ). Washington, D.C.: U.S. Government Printing Office.Google Scholar
  138. Loiseau, P., Cohandon, F., and Cohandon, S. (1971). Gelastic epilepsy, a review and report of 5 cases. Epilipsia, 12, 313–320.Google Scholar
  139. Luria, A. R. (1980). Higher cortical function in man. New York: Basic Books.Google Scholar
  140. McFie, J. and Thompson, J. A. (1972). Picture arrangement: A measure of frontal lobe function? British Journal of Psychiatry, 121, 547–552.PubMedGoogle Scholar
  141. McNabb, A. W., Carroll, W. M., and Mastaglia, F. L. (1988). “Alien hand” and loss of bimanual coordination after dominant anterior cerebral artery territory infarction. Journal of Neurology, Neurosurgery and Psychiatry, 51, 218–222.Google Scholar
  142. Meyer, C., MacElhaney, M., Martin, W., and MacGraw, C. P. (1973). Stereotaxic cingulotomy with results of acute stimulation and serial psychological testing. In L. V. Laitinen, and K. E. Livingston (Eds.), Surgical approaches to psychiatry (pp. 38–57 ). Lancaster: Medical Publishing Co.Google Scholar
  143. Mettler, F. A., Spindler, J., Mettler, C. C., and Combs, J. D. (1936). Disturbances in gastrointestinal function after localized ablations of cerebral cortex. Archives of Surgery, 32, 618–620.Google Scholar
  144. Miller, B. L., Cummings, J. L., McIntyre, H., Ebers, G., and Grode, M. (1986). Hypersexuality or altered sexual preferences following brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 49, 867873.Google Scholar
  145. Miller, L. (in press). Neuropsychology, personality and cognitive style. Toward a general theory. Psychoanalytic Review Google Scholar
  146. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren and K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313–334 ). New York: McGraw-Hill.Google Scholar
  147. Milner, B. (1971). Interhemispheric differences in the localization of psychological process in man. British Medical Bulletin, 27, 272–277.PubMedGoogle Scholar
  148. Mishkin, M. (1964). Perseveration of central sets after frontal lesions in monkeys. In J. M. Warren and K. Akert (Eds.), The frontal granular cortex and behavior (pp. 219–241 ). New York: McGraw-Hill.Google Scholar
  149. Mishkin, M., and Pribram, K. H. (1956). Analysis of the effects of frontal lesion in monkeys. II. Variation of delayed response. Journal of Comparative and Physiological Psychology, 49, 36–40.PubMedGoogle Scholar
  150. Myers, R. E., Swett, C., and Miller, M. (1973). Loss of social group affinity following prefrontal lesions in free-ranging macaques. Brain Research, 64, 257–269.PubMedGoogle Scholar
  151. Nichols, I., and Hunt, J. McV. (1940). A case of partial bilateral frontal lobectomy. American Journal of Psychiatry, 96, 1063–1087.Google Scholar
  152. Novoa, O. P., and Ardila, A. (1987). Linguistic abilities in patients with prefrontal damage. Brain and Language, 30, 206–225.PubMedGoogle Scholar
  153. Ojemann, G. A., and Whitaker, H. A. (1978). Linaguage localization and variability. Brain and Language, 6, 239–260.PubMedGoogle Scholar
  154. Oppler, W. (1950). Manic psychosis in a case of parasagital meningioma. Archives of Neurology and Psychiatry, 47, 417–430.Google Scholar
  155. Orgogozo, J. M., and Larsen, B. (1979). Activation of the supplementary motor area during voluntary movement in man suggest it works as a supramodal motor area. Science, 206, 847–850.Google Scholar
  156. Oscar-Berman, M. (1975). The effects of dorsolateral-frontal and ventrolateral orbitofrontal lesions on spatialdiscrimination learning and delayed response in two modalities. Neuropsychologia, 13, 237–246.PubMedGoogle Scholar
  157. Pandya, D. N., and Kuypers, H. G. J. M. (1969). Corticocortial connections in the rhesus monkey. Brain Research, 13, 13–16.PubMedGoogle Scholar
  158. Pandya, D. N., and Vignolo, L. A. (1971). Infra and interhemispheric projections of the precentral premotor and arcuate areas in the rhesus monkey. Brain Research, 26, 217–233.PubMedGoogle Scholar
  159. Partridge, M. (1950). Pre frontal leucotomy. A survey of 300 cases personally followed over 1 and’/2–3 years. Oxford: Blackwell.Google Scholar
  160. Passingham, R. E. (1981). Broca’s area and the origins of human vocal skills. Philosophical Transactions of the Royal Society of London (Biology), 292, 167–175.Google Scholar
  161. Pechtel, C., McAvoy, T., Levitt, M., Kloing, A., and Masserman, J. H. (1958). The cingulate and behavior. Journal of Nervous and Mental Disease, 126, 148–152.Google Scholar
  162. Penfield, W., and Jasper, H. (1954). Epilepsy and the functional anatomy of the human brain. Boston: Little-Brown.Google Scholar
  163. Penfield, W., and Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. New York: Macmillan.Google Scholar
  164. Penfield, W., and Roberts, L. (1959). Speech and brain mechanisms. Princeton: Princeton University Press.Google Scholar
  165. Penfield, W., and Welch, K. (1951). Supplementary motor area of cerebral cortex. Clinical and experimental study. Archives of Neurology and Psychiatry, 66, 289–317.PubMedGoogle Scholar
  166. Perris, C. (1974). Averaged evoked responses (AER) in patients with affective disorders. Acta Psychiatrica Scandinavica, 225, 1–107.Google Scholar
  167. Petrides, M., and Milner, N. (1982). Deficits on subject-ordered tasks after frontal temporal lobe lesions in man. Neuropsychologia, 20, 249–262.PubMedGoogle Scholar
  168. Petrie, A. (1952). Personality and the frontal lobes. New York: Blakiston.Google Scholar
  169. Pietro, M. J. S., and Rigdrodsky, M. S. (1986). Patterns of oral-verbal perseveration in adult aphasics. Brain and Language, 29, 1–17.Google Scholar
  170. Porteus, S. D., and Peters, H. N. (1947). Psychosurgery and test validity. Journal of Abnormal (Social) Psychology, 42, 473–488.Google Scholar
  171. Powell, E. W. (1978). The cingulate bridge between allocortex, isocortex, and thalamus. Anatomical Records, 190, 783–794.Google Scholar
  172. Powell, E. W., Akagi, K., and Hatton, J. B. (1974). Subcortical projections of the cingulate gyros in the cat. Journal de Hirnforsch, 15, 269–278.Google Scholar
  173. Pragay, E. B., Mirskey, A. F., and Nakamura, R. K. (1987). Attention-related activity in the frontal association cortex during a go/no-go discrimination task. Experimental Neurology, 96, 841–500.Google Scholar
  174. Pribram, K. H., Ahumada, A., Hartog, J., and Ross, L. A. (1964). A progress report on the neurological processes disturbed by frontal lesions in primates. In J. M. Warrent and K. Akert (Eds.), The frontal granular cortex and behavior (pp. 28–55 ). New York: McGraw-Hill.Google Scholar
  175. Pribram, K. H., Chow, K. L., and Semmes, J. (1953). Limit and organization of the cortical projections from theGoogle Scholar
  176. medial thalamic nucleus in the monkey.Journal of Comparative Neurology, 98,433–448.Google Scholar
  177. Reitman, F. (1946). Orbital cortex syndrome following leucotomy. American Journal of Psychiatry, 103, 238–241.PubMedGoogle Scholar
  178. Reitman, F. (1947). Observations of personality changes after leucotomy. Journal of Nervous and Mental Disease, 105, 582–589.PubMedGoogle Scholar
  179. Richfield, E. K., Twyman, T., and Berent, S. (1987). Neurological syndrome following bilateral damage to the head of the caudate nuclei. Annals of Neurology, 22, 768–771.PubMedGoogle Scholar
  180. Rinkel, M., Greenblatt, M., Coon, G. P., and Solomon, H. C. (1950). Relations of the frontal lobe to autonomic nervous system in man. In M. Greenblatt, M. Arnot, and H. C. Solomon (Eds.), Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  181. Rinkel, M., Solomon, H. C., Rosen, D., and Levine, J. (1950). Lobotomy and urinary bladder. In M. Greenblatt, M. Arnot, and H. C. Solomon (Eds.), Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  182. Rizzolatti, G., Scandolara, C., Matelli, M., and Gentillucci, M. (1981a). Afferent properties of periacuate neurons in macaque monkeys. 1, 2. Behavioral Brain Research, 2, 125–146, 147–163.Google Scholar
  183. Rizzolatti, G., Scandolara, C., Gentillucci, M., and Camarda, R., (198 lb). Response properties and behavioral modulation of “mouth” neurons on the post-arcuate cortex (area 6) in macaque monkeys. Brain Research, 225, 421–424.Google Scholar
  184. Robinson, B. W. (1967). Vocalization evoked from forebrain in macaca mulatta. Physiology and Behavior, 2, 345–352.Google Scholar
  185. Robinson, R. G., and Benson, D. F. (1981). Depression in aphasic patients: Frequency severity and clinical-pathological correlations Brain and Language, 14, 282–291.PubMedGoogle Scholar
  186. Robinson, R. G., Kubos, K. L., Starr, L. B., Rao, K., and Price, T. R. (1984). Mood disorders in stroke patients. Brain, 107, 81–93.PubMedGoogle Scholar
  187. Robinson, R. R., and Szetela, B. (1981). Mood change following left hemisphere brain injury. Annals of Neurology, 9, 447–453.PubMedGoogle Scholar
  188. Roland, P. E., Skinhoj, E., Lassen, N. A., and Larsen, B. (1980). Different cortical areas in man in organization of voluntary movements in extrapersonal space. Journal of Neurophysiology, 43, 137–150.PubMedGoogle Scholar
  189. Rose, A. S. (1950). Postoperative behavior. In M. Greenblatt, M. Arnot, and H. C. Solomon (Eds.), Studies in lobotomy. Orlando, FL: Grune and Stratton.Google Scholar
  190. Rosenbaum, A. H., and Berry, M. J. (1975). Positive therapeutic response to lithium in hypomania secondary to organic brain syndrome. American Journal of Psychiatry, 132, 1072–1073.PubMedGoogle Scholar
  191. Rosenkilde, C. E. (1979). Functional heterogeneity of the prefrontal cortex in the monkey: A review. Behavioral and Neural Biology, 25, 301–345.PubMedGoogle Scholar
  192. Ross, E. D. (1981). The aprosodias. Functional-anatomic organization of the affective components of language in the right hemisphere. Archives of Neurology, 38, 561–569.PubMedGoogle Scholar
  193. Ross, E. D., and Mesulam, M. M. (1979). Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Archives of Neurology, 36, 144–148.PubMedGoogle Scholar
  194. Rossi, G. F., Brodai, A. (1956). Corticofugal fibers to the brain stem reticular formation. Journal of Anatomy, 90, 42–62.PubMedGoogle Scholar
  195. Rothwell, J. C., Thompson, P. D., Day, B. L., Dick, J. P. R., Kachi, T., Cowan, J. M. A., and Marsden, C. D. (1987). Motor cortex stimulation in intact man. Brain, 110, 1173–1190.PubMedGoogle Scholar
  196. Ruch, T. C., and Shenkin, H. A. (1943). The relationship of area 13 on the orbital surface of the frontal lobes to hyperactivity and hyperphagia. Journal of Neurophysiology, 6, 349–360.Google Scholar
  197. Rylander, G. (1939). Personality changes after operation on the frontal lobes. A clinical study of 32 cases. Acta Psychiatrica et Neurologica, 20 ( Suppl. XX ), 3–327.Google Scholar
  198. Rylander, G. (1948). Personality analysis before and after frontal lobotomy. Research Publication of the Association of Nervous and Mental Disease, 27, 691–700.Google Scholar
  199. Samuels, J. A., and Benson, D. F. (1979). Some aspects of language comprehension in anterior aphasia. Brain and Language, 8, 275–286.PubMedGoogle Scholar
  200. Sandson, J., and Albert, M. L. (1987). Perseveration in behavioral neurology. Neurology, (New York), 37, 1736 1741.Google Scholar
  201. Sanides, F. (1972). Representation in cerebral cortex. In G. H. Bourne (Ed.), The structure and function of nervous tissue (Vol. 5, pp. 329–453). Orlando: FL: Academic Press.Google Scholar
  202. Sauerland, E. K., Nakamura, Y., and Clemente, C. D. (1967). The role of the lower brain stem in cortically induced inhibition of somatic reflexes in the cat. Brain Research, 6, 164–180.PubMedGoogle Scholar
  203. Scheibel, M. E., and Scheibel, A. B. (1966). Patterns of organization in specific and nonspecific thalamic fields. In D. P. Papura and M. D. Yahr (Eds.), The thalamus (pp. 13–46). New York: Columbia University Press. Segraves, M. A., and Goldberg, M. E. (1987). Functional\ properties of corticotectal neurons in the monkey’s frontal eye field. Journal of Neurophysiology, 58, 1387–1418.Google Scholar
  204. Shapiro, B. E., Alexander, M. P., Gardner, H., and Mercer, S. (1981). Mechanisms of confabulations. Neurology, (New York), 31, 1070–1076.Google Scholar
  205. Siegel, A., Fukushima, T., Meibach, R., Burke, L., Edinger, H., and Weiner, S. (1977). The origin of the afferent supply to the mediodorsal thalamic nucleus: Enhanced HRP transport by selective lesions. Brain Research, 135, 11–23.Google Scholar
  206. Siegel, J., and Wang, R. Y. (1974). Electroencephalographic, behavioral, and single unit activity produced byGoogle Scholar
  207. stimulation of forebrain inhibitory structures in cats. Experimental Neurology,42, 28–50.Google Scholar
  208. Sinyour, D., Jacques, P., Kaloupek, D. G., Becker, R., Goldenberg, M., and Coopersmith, H. (1986).Google Scholar
  209. Poststroke depression and lesion location. Brain, 109,537–546.Google Scholar
  210. Skinner, J. E., and Yingling, C. D. (1977). Central gating mechanisms that regulate event related potentials and behavior. In J. Desmedt (Ed.), Attention, voluntary contraction, and event related cerebral potentials (pp. 30–69 ). Basel, S. Karger.Google Scholar
  211. Smith, A. (1966). Intellectual functions in patients with lateralized frontal tumors. Journal of Neurology, Neurosurgery and Psychiatry, 29, 52–59.Google Scholar
  212. Smith, W. K. (1944). The results of ablation of the cingular region of the cerebral cortex. Federal Proceedings, 3, 42–55.Google Scholar
  213. Spencer, S. S., Spencer, D. D., Williamson, P. D., and Mattson, R. H. (1983). Sexual automatisms in complex partial seizures. Neurology (New York), 33, 527–533.Google Scholar
  214. Squire, L. (1987). Memory and brain. New York: Oxford University Press.Google Scholar
  215. Stamm, J. S., and Rosen, S. C. (1973). The locus and crucial time of implication of prefrontal cortex in the delayed response task. In K. H. Pribram and A. R. Luria (Eds.), Psychophysiology of the frontal lobes (pp. 139–153 ). Orlando, FL: Academic Press.Google Scholar
  216. Starkstein, S. E., Pearlson, G. E., Boston, J., and Robinson, R. G. (1987). Mania after brain injury. Archives of Neurology, 44, 1069–1073.PubMedGoogle Scholar
  217. Stepien, I., and Stamm, J. S. (1970). Impairments on locomotor tasks involving spatial opposition between cue and reward frontally ablated monkeys. Acta Neurobiologica Experimentalis, 30, 1–12.Google Scholar
  218. Steriade, M. (1964). Development of evoked responses and self-sustained activity within amygdalo-hippocampal circuits. Electroencephalography and Clinical Neurophysiology, 16, 221–231.PubMedGoogle Scholar
  219. Stern, K., and Dancey, T. (1942). Glioma of the diencephalon in a manic patient. American Journal of Psychiatry, 98, 716.Google Scholar
  220. Strom-Olsen, J. (1946). Discussion on prefrontal leucotomy with reference to indication and results. Proceedings of the Royal Society of Medicine, 39, 443–444.Google Scholar
  221. Stuss, D. T., Alexander, M. P., Lieberman, A., and Levine, H. (1978). An extraordinary form of confabulation. Neurology (New York), 28, 1166–1172.Google Scholar
  222. Stuss, D. T., and Benson, F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 3–28.PubMedGoogle Scholar
  223. Tanji, J., and Kurata, K. (1982). Comparison of movement-related neurons in two cortical motor areas of primates. Journal of Neurophysiology, 40, 644–653.Google Scholar
  224. Tanji, J., Tanguchi, K., and Saga, T. (1980). Supplementary motor area: Neuronal response to motor instructions. Journal of Neurophysiology, 43, 60–68.PubMedGoogle Scholar
  225. Teuber, H. L. (1964). The riddle of frontal lobe function in man. In J. M. Warren and Akert (Eds.), The frontal granular cortex and behavior (pp. 410–477 ). New York: McGraw-Hill.Google Scholar
  226. Tow, P. M. (1955). Personality changes following frontal leucotomy. New York: Oxford University Press.Google Scholar
  227. Tow, P. M., and Whitty, C. W. M. (1953). Personality changes after operations of the cingulate gyrus in man. Journal of Neurology, Neurosurgery and Psychiatry, 16, 186–193.Google Scholar
  228. Tramo, M. J., Baynes, K., and Volpe, B. T. (1988). Impaired syntactic comprehension and production in Broca’s aphasia: CT lesion localization and recovery patterns. Neurology (New York), 38, 95–98.Google Scholar
  229. Travis, A. M. (1955). Neurological deficiencies following supplementary motor area lesions in macaca mulatta. Brain, 78, 174–198.PubMedGoogle Scholar
  230. Tucker, D. M. (1981). Lateral brain, function, emotion, and conceptualization. Psychological Bulletin, 89, 1946.Google Scholar
  231. Tucker, D. M Stenslie, C. E., Roth, R. S., and Shearer, S. L. (1981). Right frontal lobe activation and right hemisphere performance: decrement during a depressed mood. Archives of General Psychiatry, 38,169174.Google Scholar
  232. Updyke, B V. (1975). The patterns of projection of cortical areas 17, 18, 19, onto the laminae of the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 163,377–396.Google Scholar
  233. Van Buren, J. M., and Fedio, P. (1976). Functional representation on the medial aspect of the frontal lobes in man. Journal of Neurosurgery, 44, 275–289.Google Scholar
  234. Van Hoessen, G. E., Pandya, D. N., and Butters, N. (1975). Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. Brain Research, 95, 25–38.Google Scholar
  235. Victor, M., Adams, R. E., and Collins, G. H. (1971). The Wernicke-Korasakoff syndrome. Philadelphia: F. A. Davis.Google Scholar
  236. Wagman, I. H., Krieger, H. P., Papetheodorou, C. A., and Bender, M. B. (1961). Eye movements elicited by surface and depth electrode stimulation of the frontal lobe of Macaca mulatta. Journal of Comparative Neurology, 117, 179–188.Google Scholar
  237. Wall, P. D., and Davis, G. D. (1951). Three cerebral cortical systems affecting autonomic function. Journal of Neurophysiology, 14, 507–517.PubMedGoogle Scholar
  238. Walker, A. E. (1940). The medial thalamic nucleus: A comparative anatomical, physiological, and clinical study. Journal of Comparative Neurology, 73, 87–115.Google Scholar
  239. Ward, C. D. (1988). Transient feelings of compulsion caused by hemispheric lesions: Three cases. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 266–268.Google Scholar
  240. Watson, R. T., Fleet, S., Gonzalez-Rothi, L., and Heilman, K. M. (1986). Apraxia and the supplementary motor area. Archives of Neurology, 43, 787–792.PubMedGoogle Scholar
  241. Watts, J. W., and Fulton, J. F. (1934). Intussuseption–The relation of the cerebral cortex to intestinal motility in the monkey. New England Journal of Medicine, 210, 883–890.Google Scholar
  242. Weinrich, M., Wise, S. P., and Mauritz, K. H. (1984). A neurophysiological study of the premotor cortex in rhesus monkey. Brain, 107, 385–414.Google Scholar
  243. Welch, K., and Stuteville, P. (1958). Experimental production of unilateral neglect in monkeys. Brain, 81, 34 1347.Google Scholar
  244. Whitlock, D. G., and Nauta, W. J. H (1956). Subcortical projections from the temporal neurocortex in Macaca mulatta. Journal of Comparative Neurology, 106,183–212.Google Scholar
  245. Whitty, C. W., and Lewin, W. (1957). Vivid day dreaming—An unusual form of confusion following anterior cingulectomy. Brain, 80, 72–76.PubMedGoogle Scholar
  246. Whitty, C. W., and Lewin, W. (1960). A Korsakoff syndrome in the post cingulectomy confusional state.Brain, 83, 648–653.Google Scholar
  247. Wilcott, R. C. (1974). Skeletal and autonomic inhibition from low frequency electrical stimulation of the cat’s brain. Neuropsychologia, 12, 487–495.PubMedGoogle Scholar
  248. Wilcott, R. C. (1977). Electrical stimulation in the prefrontal cortex and delayed response in the cat. Neuropsychologia, 15, 115–121.Google Scholar
  249. Wilkins, A. J., Shallice, T., and McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25, 359–365.PubMedGoogle Scholar
  250. Woolsey, C. N. (1958). Organization of somatic sensory and motor area of the cerebral cortex. In H. F. Harlow and C. N. Woolsey (Eds.), Biological and biochemical bases of behavior (pp. 63–81 ). Madison WI: University of Wiscons in Press.Google Scholar
  251. Wurtz, R. H. Goldberg, M. E., and Robinson, D. L. (1980). Behavioral modulation of visual response in the monkey. In J. M. Sprague and A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology. Orlando, FL: Academic Press.Google Scholar
  252. Yarcorzynski, G. K., and Davis, L. (1942). Modifications of perceptual responses with unilateral lesions of the frontal lobes. Transactions of the American Neurological Association, 68, 122–130.Google Scholar
  253. Yingling, C. D., and Skinner, J. E. (1977). Gating of thalamic input to cerebral cortex by nucleus reticular is thalami. In J. Desmedt (Ed.), Attention, voluntary contraction and event related cerebral potentials (pp. 70–96 ). Basel: S. Karger.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Rhawn Joseph
    • 1
  1. 1.Neurobehavioral CenterSanta ClaraUSA

Personalised recommendations