Structure and Localization of Glycoproteins and Proteoglycans

  • Renée K. Margolis
  • Richard U. Margolis


Glycosaminoglycans are high-molecular-weight linear carbohydrate polymers that are generally composed of disaccharide repeating units of a uronic acid (D-glucuronic acid or L-iduronic acid) and a hexosamine (G1cNAc or GaINAc). Chondroitin sulfate and heparan sulfate occur as proteoglycans in which the polysaccharide chains are covalently linked at their reducing ends to the hydroxyl groups of serine residues in a protein moiety.


Hyaluronic Acid Sialic Acid Heparan Sulfate Chondroitin Sulfate Sulfate Proteoglycan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in this chapter

Con A

concanavalin A


nerve growth factor


NGFinducible large external glycoprotein


N-acetylneuraminic acid












n-glycolylneuraminic acid










dopamine β-hydroxylase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbs, M. T., and Phillips, J. H., 1980, Organization of the proteins of the chromaffin granule membrane, Biochim. Biophys. Acta 595: 200–221.PubMedGoogle Scholar
  2. Abeijon, C., and Hirschberg, C. B., 1988, Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 85: 1010–1014.PubMedGoogle Scholar
  3. Amblard, F., He, J.-T., Barbet, J., Goridis, C., and Prochiantz, A., 1988, A 140-kilodalton protein is released from cultured astrocytes by phosphatidylinositol phospholipase C, J. Neurochem. 50: 486–489.PubMedGoogle Scholar
  4. Anderson, M. J., and Fambrough, D. M., 1983, Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers, J. Cell Biol. 97: 1396–1411.Google Scholar
  5. Anderson, M. J., Klier, F. G., and Tanguay, K. E., 1984, Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction, J. Cell Biol. 99: 1769–1784.PubMedGoogle Scholar
  6. Aquino, D., Wong, R., Margolis, R. U., and Margolis, R. K., 1980, Sialic acid residues inhibit proteolytic degradation of dopamine 3-hydroxylase, Febs Lett. 112: 195–198.PubMedGoogle Scholar
  7. Aquino, D. A., Margolis, R. U., and Margolis, R. K., 1984a, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina and peripheral nerve, J. Cell Biol. 99: 1117–1129.PubMedGoogle Scholar
  8. Aquino, D. A., Margolis, R. U., and Margolis, R. K., 1984b, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain, J. Cell Biol. 99: 1130–1139.PubMedGoogle Scholar
  9. Bach, G., and Berman, E. R., 197la, Amino sugar-containing compounds of the retina. I. Isolation and identification, Biochim. Biophys. Acta 252: 453–461.Google Scholar
  10. Bach, G., and Berman, E. R., 1971b, Amino sugar-containing compounds of the retina. II. Structural studies, Biochim. Biophys. Acta 252: 461–471.Google Scholar
  11. Banerjee, S., and Margolis, R. U., 1982, Glycoproteins and proteoglycans of the chromaffin granule matrix, J. Neurochem. 39: 1700–1703.PubMedGoogle Scholar
  12. Beasley, L., and Stallcup, W. B., 1987, The nerve growth factor-inducible large external (Nile) glycoprotein and neural cell adhesion molecule (N-Cam) have distinct patterns of expression in the developing rat central nervous system, J. Neurosci. 7: 708–715.PubMedGoogle Scholar
  13. Benedum, U. M., Baeuerle, P. A., Konecki, D. S., Frank, R., Powell, J., Mallet, J., and Huttner, W. B., 1986, The primary structure of bovine chromogranin A: A representative of a class of acidic secretory proteins common to a variety of peptidergic cells, Embo J. 5: 1495–1502.PubMedGoogle Scholar
  14. Benedum, U. M., Lamouroux, A., Konecki, D. S., Rosa, P., Hille, A., Baeuerle, P. A., Frank, R., Lottspeich, F., Mallet, J., and Huttner, W. B., 1987, The primary structure of human secretogranin I (chromogranin B): Comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region, Embo J. 6: 1203–1211.PubMedGoogle Scholar
  15. Bock, E., Richter-Landsberg, C., Faissner, A., and Schachner, M., 1985, Demonstration of immunochemical identity between the nerve growth factor-inducible large external (Nile) glycoprotein and the cell adhesion molecule Ll, Embo J. 4: 2765–2768.PubMedGoogle Scholar
  16. Bolin, L. M., and Rouse, R. V., 1986, Localization of Thy-1 expression during postnatal development of the mouse cerebellar cortex, J. Neurocytol. 15: 29–36.PubMedGoogle Scholar
  17. Brandan, E., Maldonado, M., Garrido, J., and Inestrosa, N. C., 1985, Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans, J. Cell Biol. 101: 985–992.Google Scholar
  18. Campbell, D. G. Gagnon, J., Reid, K. B. M., and Williams, A. F., 1981, Rat brain Thy-1 glycoprotein. The amino acid sequence, disulphide bonds and an unusual hydrophobic region, Biochem. J. 195: 15–30.PubMedGoogle Scholar
  19. Carey, D. J., and Todd, M. S., 1986, A cytoskeleton-associated plasma membrane heparan sulfate proteoglycan in Schwann cells, J. Biol. Chem. 261: 7518–7525.PubMedGoogle Scholar
  20. Chen, H.-C., Shimohigashi, Y., Dufau, M. L., and Catt, K. J., 1982, Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin, J. Biol. Chem. 257: 14446–14452.PubMedGoogle Scholar
  21. Choi, H. U., and Meyer, K., 1975, The structure of a sulfated glycoprotein of chick allantoic fluid: Methylation and periodate oxidation, Carbohyd. Res. 40: 77–88.Google Scholar
  22. Cole, G. J., Schubert, D., and Glaser, L., 1985, Cell–substratum adhesion in chick neural retina depends upon protein–heparan sulfate interactions, J. Cell Biol. 100: 1192–1199.PubMedGoogle Scholar
  23. Cole, G. J., Loewy, A., and Glaser, L., 1986, Neuronal cell-cell adhesion depends on interactions of N-Cam with heparin-like molecules, Nature 320: 445–447.PubMedGoogle Scholar
  24. Davis, L. I., and Blobel, G., 1987, Nuclear pore complex contains a family of glycoproteins that includes p62: Glycosylation through a previously unidentified cellular pathway, Proc. Natl. Acad. Sci. USA 84: 7552–7556.PubMedGoogle Scholar
  25. Edgar, D., Timpl, R., and Thoenen, H., 1984, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, Embo J. 3: 1463–1468.PubMedGoogle Scholar
  26. Edge, A. S. B., and Spiro, R. G., 1984, Presence of sulfate in N-glycosidically linked carbohydrate units of calf thyroid plasma membrane glycoproteins, J. Biol. Chem. 259: 4710–4713.PubMedGoogle Scholar
  27. Ferwerda, W., Blok, C. M., and Heijlman, J., 1981, Turnover of free sialic acid, Cmp-sialic acid, and bound sialic acid in rat brain, J. Neurochem. 36: 1492–1499.PubMedGoogle Scholar
  28. Finne, J., 1985, Polysialic acid—a glycoprotein carbohydrate involved in neural adhesion and bacterial meningitis, Trends Biochem. Sci. 10: 129–132.Google Scholar
  29. Finne, J., and Krusius, T., 1976, O-glycosidic carbohydrate units from glycoproteins of different tissues: Demonstration of a brain-specific disaccharide, a-galactosyl(1–3)N-acetylgalactosamine, Febs Lett. 66: 94–97.PubMedGoogle Scholar
  30. Finne, J. ,and Krusius, T., 1982, Preparation and fractionation of glycopeptides, Methods Enzymol. 83: 269–277.PubMedGoogle Scholar
  31. Finne, J., and Mäkelä, P. H., 1985, Cleavage of the polysialosyl units of brain glycoproteins by a bacteriophage endosialidase, J. Biol. Chem. 260: 1265–1270.PubMedGoogle Scholar
  32. Finne, J., Krusius, T., Rauvala, H., and Hemminki, K., 1977, The disialosyl group of glycoproteins: Occurrence in different tissues and cellular membranes, Eur. J. Biochem. 77: 319–323.PubMedGoogle Scholar
  33. Finne, J., Krusius, T., Margolis, R. K., and Margolis, R. U., 1979, Novel mannitol-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfate proteoglycan from brain, J. Biol. Chem. 254: 10295–10300.PubMedGoogle Scholar
  34. Fischer-Colbrie, R., Schachinger, M., Zangerle, R., and Winkler, H., 1982, Dopamine ß-hydroxylase and other glycoproteins from the soluble content and the membranes of adrenal chromaffin granules: Isolation and carbohydrate analysis, J. Neurochem. 38: 725–732.PubMedGoogle Scholar
  35. Fischer-Colbrie, R., Zangerle, R., Frischenschlager, I., Weber, A., and Winkler, H., 1984, Isolation and immunological characterization of a glycoprotein from adrenal chromaffin granules, J. Neurochem. 42: 1008–1016.PubMedGoogle Scholar
  36. Flanagan, B. F., Teplow, D. B., Dreyer, W. J., and Fabre, J. W., 1986, Unusual phylogenetic conservation of the N–terminal amino acid sequence of the central nervous system–specific membrane glycoprotein F3–87–8 (Cnsgp130), J. Neurochem. 46: 542 – 544.PubMedGoogle Scholar
  37. Fransson, L.-A., Hampson, I., Kumar, S., and Gallagher, J., 1985, Chemical heterogeneity of heparan sulfate from a human neuroblastoma cell line, Acta Chem. Scand. B 39: 305–313.PubMedGoogle Scholar
  38. Friedlander, D., Grumet, M., and Edelman, G., 1986, Nerve growth factor enhances expression of neuronglia cell adhesion molecule in PC12 cells, J. Cell Biol. 102: 413–419.PubMedGoogle Scholar
  39. Gallagher, J. T., Lyon, M., and Steward, W. P., 1986, Structure and function of heparan sulfate proteoglycans, Biochem. J. 236: 313–325.PubMedGoogle Scholar
  40. Gallo, V., Bertolotto, A., and Levi, G., 1987, The proteoglycan chondroitin sulfate is present in a sub-population of cultured astrocytes and in their precursors, Dev. Biol. 123: 282–285.PubMedGoogle Scholar
  41. Gammon, C. M., Goodrum, J. F., Toews, A. D., Okabe, A., and Morell, P., 1985, Axonal transport of glycoconjugates in the rat visual system, J. Neurochem. 44: 376–387.PubMedGoogle Scholar
  42. Gandy, S., Czernick, A. J., and Greengard, P., 1988, Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Cat2+/calmodulin-dependent protein kinase II, Proc. Natl. Acad. Sci. Usa 85: 6218–6221.PubMedGoogle Scholar
  43. Gavine, F. S., Pryde, J. G., Deane, D. L., and Apps, D. K., 1984, Glycoproteins of the chromaffin granule membrane: Separation by two-dimensional electrophoresis and identification by lectin binding, J. Neurochem. 43: 1243–1252.PubMedGoogle Scholar
  44. Geissler, D., Martinek, A., Margolis, R. U., Margolis, R. K., Skrivanek, J. A., Ledeen, R. W., König, P., and Winkler, H., 1977, Composition and biogenesis of complex carbohydrates of adrenal chromaffin granules, Neuroscience 2: 685–693.PubMedGoogle Scholar
  45. Giannattasio, G., Zanini, A., and Meldolesi, J., 1979, Complex carbohydrates of secretory organelles, in: Complex Carbohydrates of Nervous Tissue (R. U. Margolis and R. K. Margolis, eds.), pp. 327–345, Plenum Press, New York.Google Scholar
  46. Giannattasio, G., Zanini, A., Rosa, P., Meldolesi, J., Margolis, R. K., and Margolis, R. U., 1980, Molecular organization of prolactin granules-III. Intracellular transport of glycosaminoglycans and glycoproteins of the bovine prolactin granule matrix, J. Cell Biol. 86: 273–279.PubMedGoogle Scholar
  47. Ginsburg, V. (ed.), 1982, Complex Carbohydrates, Part D, (Meth. Enzymol., Vol. 83 ), Academic Press, New York.Google Scholar
  48. Ginsburg, V. (ed.), 1987, Complex Carbohydrates, Part E, (Meth. Enzymol., Vol. 138 ), Academic Press, New York.Google Scholar
  49. Gowda, D. C., Margolis, R. U., and Margolis, R. K., 1989a, Presence of the Hnk-1 epitope on poly(Nacetyllactosaminyl) oligosaccharides and identification of multiple core proteins in the chondroitin sulfate proteoglycans of brain, Biochemistry,in press.Google Scholar
  50. Gowda, D. C., Margolis, R. K., Frangione, B., Ghiso, J., Larrondo-Lillo, M., and Margolis, R. U., 1989b, Relation of the amyloid 13 protein precursor to heparan sulfate proteoglycans, Science,in press.Google Scholar
  51. Gowda, D. C., Goossen, B., Margolis, R. K., and Margolis, R. U., 1989c, Chondroitin sulfate and heparin sulfate proteoglycans of PC12 pheochromocytoma cells, J. Biol. Chem.,in press.Google Scholar
  52. Gralnick, H. R., Williams, S. B., and Rick, M. E., 1983, Role of carbohydrate in multimeric structure of factor Viii/von Willebrand factor protein, Proc. Natl. Acad. Sci. USA 80: 2771–2774.PubMedGoogle Scholar
  53. Green, E. D., and Baenziger, J. U., 1988, Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones, J. Biol. Chem. 263: 25–35.PubMedGoogle Scholar
  54. Greene, L. A., and Shelanski, M. L., 1989, The nerve growth factor-inducible large external (Nile) glycoprotein: Biochemistry and regulation of synthesis, in: Morphoregulatory Molecules ( G. M. Edelman, B. A. Cunningham, and J.-P. Thiery, eds.), Wiley, New York.Google Scholar
  55. Greene, L. A., and Tischler, A. S., 1982, PC12 pheochromocytoma cultures in neurobiological research, in: Advances in Cellular Neurobiology (S. Fedoroff and L. Hertz, eds.), Vol. 3, pp. 373–414, Academic Press, New York.Google Scholar
  56. Hageman, G. S., and Johnson, L. V., 1987, Chondroitin 6-sulfate glycosaminoglycan is a major constituent of primate cone photoreceptor matrix sheaths, Curr. Eye Res. 6: 639–646.PubMedGoogle Scholar
  57. Hamos, J., Desai, P. R., and Villafranca, J. J., 1987, Characterization and kinetic studies of deglycosylated dopamine 13-hydroxylase, Faseb J. 1: 143–148.PubMedGoogle Scholar
  58. Hampson, I. N., Kumar, S., and Gallagher, J. T., 1983, Differences in the distribution of 0-sulphate groups of cell-surface and secreted heparan sulphate produced by human neuroblastoma cells in culture, Biochim. Biophys. Acta 763: 183–190.PubMedGoogle Scholar
  59. Hampson, I. N., Kumar, S., and Gallagher, J. T., 1984, Heterogeneity of cell-associated and secretory heparan sulphate proteoglycans produced by cultured human neuroblastoma cells, Biochim. Biophys. Acta 801: 306–313.PubMedGoogle Scholar
  60. Hanover, J. A., Cohen, C. K., Willingham, M. C., and Park, M. K., 1987, 0-Linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins, J. Biol. Chem. 262: 9887–9894.Google Scholar
  61. Hascall, V. C., and Hascall, G. K., 1982, Proteoglycans, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 39–63, Plenum Press, New York.Google Scholar
  62. Hassell, J. R., Kimura, J. H., and Hascall, V. C., 1986, Proteoglycan core protein families, Annu. Rev. Biochem. 55: 539–567.PubMedGoogle Scholar
  63. Hewitt, A. T., 1986, Extracellular matrix molecules: Their importance in the structure and function of the retina, in: The Retina: A Model for Cell Biology Studies (R. Adler and D. Farber, eds.), Part II, pp. 169–214, Academic Press, New York.Google Scholar
  64. Hoffman, S., and Edelman, G. M., 1987, A proteoglycan with Hnk-1 antigenic determinants is a neuron-associated ligand for cytotactin, Proc. Natl. Acad. Sci. USA 84: 2523–2527.PubMedGoogle Scholar
  65. Hoffman, S., Crossin, K. L., and Edelman, G. M., 1988, Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules, J. Cell Biol. 106: 519–532.PubMedGoogle Scholar
  66. Holt, G. D., Snow, C. M., Senior, A., Haltiwanger, R. S., Gerace, L., and Hart, G. W., 1987a, Nuclear pore complex glycoproteins contain cytoplasmically disposed 0-linked N-acetylglucosamine, J. Cell Biol. 104: 1157–1164.Google Scholar
  67. Holt, G. D., Haltiwanger, R. S., Tones, C.-R., and Hart, G. W., 1987b, Erythrocytes contain cytoplasmic glycoproteins, J. Biol. Chem. 262: 14847–14850.Google Scholar
  68. Hooghe-Peters, E. L., and Hooghe, R. J., 1982, The Thy-1 giycoprotein on nerve cells in culture, J. Neuroimmunol. 2: 191–200.PubMedGoogle Scholar
  69. Höök, M., Kjellén, L., Johansson, S., and Robinson, J., 1984, Cell surface glycosaminoglycans, Annu. Rev. Biochem. 53: 847–869.PubMedGoogle Scholar
  70. Huber, E., König, P., Schuler, G., Aberer, W., Plattner, H., and Winkler, H., 1979, Characterization and topography of the glycoproteins of adrenal chromaffin granules, J. Neurochem. 32: 35–47.PubMedGoogle Scholar
  71. Iacangelo, A., Affolter, H.-U., Eiden, L. E., Herbert, E., and Grimes, M., 1986, Bovine chromogranin A sequence and distribution of its messenger Rna in endocrine tissues, Nature 323: 82–86.PubMedGoogle Scholar
  72. Inestrosa, N. C., Matthew, W. D., Reiness, C. G., Hall, Z. W., and Reichardt, L. F., 1985, Atypical distribution of asymmetric acetylcholinesterase in mutant PC12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan, J. Neurochem. 45: 86–94.PubMedGoogle Scholar
  73. James, W. M., and Agnew, W. S., 1987, Multiple oligosaccharide chains in the voltage-sensitive Na channel from Electrophorus electricus: Evidence for α-2, 8 linked polysialic acid, Biochem. Biophys. Res. Commun. 148: 817–826.PubMedGoogle Scholar
  74. Johnson, L. V., and Hageman, G. S., 1987, Enzymatic characterization of peanut agglutinin-binding components in the retinal interphotoreceptor matrix, Exp. Eye Res. 44: 553–566.PubMedGoogle Scholar
  75. Kalyan, N. K., and Bahl, O. P., 1983, Role of carbohydrate in human chorionic gonadotropin, J. Biol. Chem. 258: 67–74.PubMedGoogle Scholar
  76. Kennedy, J. F., 1979, Proteoglycans—Biological and Chemical Aspects in Human Life, Elsevier, Amsterdam.Google Scholar
  77. Kiang, W.-L., Crockett, C. P., Margolis, R. K., and Margolis, R. U., 1978, Glycosaminoglycans and glycoproteins associated with microsomal subfractions of brain and liver, Biochemistry 17: 3841–3848.PubMedGoogle Scholar
  78. Kiang, W.-L., Margolis, R. U., and Margolis, R. K., 1981, Fractionation and properties of a chondroitin sulfate proteoglycan and the soluble glycoproteins of brain, J. Biol. Chem. 256: 10529–10537.PubMedGoogle Scholar
  79. Kiang, W.-L., Krusius, T., Finne, J., Margolis, R. U., and Margolis, R. K., 1982, Glycoproteins and proteoglycans of the chromaffin granule matrix, J. Biol. Chem. 257: 1651–1659.PubMedGoogle Scholar
  80. Klinger, M. M., Margolis, R. U., and Margolis, R. K., 1985, Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose, J. Biol. Chem. 260: 4082–4090.PubMedGoogle Scholar
  81. Korpeinen, T., Mononen, I., Krusius, T., and Järnefelt, J., 1982, Glycosylation of proteins in developing human brain, J. Neurochem. 39: 1737–1739.PubMedGoogle Scholar
  82. Krusius, T., and Finne, J., 1977, Structural features of tissue glycoproteins. Fractionation and methylation analysis of glycopeptides derived from rat brain, kidney and liver, Eur. J. Biochem. 78: 369–379.PubMedGoogle Scholar
  83. Krusius, T., and Finne, J., 1978, Characterization of a novel sugar sequence from rat brain glycoproteins containing fucose and sialic acid, Eur. J. Biochem. 84: 395–403.PubMedGoogle Scholar
  84. Krusius, T., Finne, J., Margolis, R. U., and Margolis, R. K., 1978, Structural features of microsomal, synaptosomal, mitochondrial, and soluble glycoproteins of brain, Biochemistry 17: 3849–3854.PubMedGoogle Scholar
  85. Krusius, T., Finne, J., Margolis, R. K., and Margolis, R. U., 1986, Identification of an O-glycosidic marnose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain, J. Biol. Chem. 261: 8237–8242.PubMedGoogle Scholar
  86. Krusius, T., Reinhold, V. N., Margolis, R. K., and Margolis, R. U., 1987, Structural studies on sialylated and sulfated O-glycosidic marnose-linked oligosaccharides in the chondroitin sulfate proteoglycan of brain, Biochem. J. 245: 229–234.PubMedGoogle Scholar
  87. Lakin, K. H., and Fabre, J. W., 1981, Identification with a monoclonal antibody of a phylogenetically conserved brain-specific determinant on a 130,000 molecular weight glycoprotein of human brain, J. Neurochem. 37: 1170–1178.PubMedGoogle Scholar
  88. Lakin, K. H., Allen, A. K., and Fabre, J. W., 1983, Purification and preliminary biochemical characterization of the human and rat forms of the central nervous system–specific molecule, F3–87–8, J. Neurochem. 41: 385 – 394.PubMedGoogle Scholar
  89. Lamouroux, A., Vigny, A., Biguet, N. F., Damon, M. C., Franck, R., Henry, J.-P., and Mallet, J., 1987, The primary structure of human dopamine-ß-hydroxylase: Insights into the relationship between the soluble and the membrane-bound forms of the enzyme, Embo J. 6: 3931–3937.PubMedGoogle Scholar
  90. Lander, A. D., Fujii, D. K., and Reichardt, L. F., 1985, Laminin is associated with the “neurite outgrowth- promoting factors” found in conditioned medium, Proc. Natl. Acad. Sci. USA 82: 2183–2187.PubMedGoogle Scholar
  91. Laslop, A., Fischer-Colbrie, R., Hook, V., Obendorf, D., and Winkler, H., 1986, Identification of two glycoproteins of chromaffin granules as the carboxypeptidase H, Neurosci. Lett. 72: 300–304.PubMedGoogle Scholar
  92. Lechner, J., Wieland, F., and Sumper, M., 1985, Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose, J. Biol. Chem. 260: 860–866.PubMedGoogle Scholar
  93. Levine, J. M., and Card, J. P., 1987, Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: Association with smooth protoplasmic astrocytes, J. Neurosci. 7: 2711 2720.Google Scholar
  94. Liau, Y. H., and Horowitz, M. I., 1982, Incorporation in vitro of [3H]glucosamine or [3H]glucose and [35S]SO4 2— into rat gastric mucosa, J. Biol. Chem. 257: 4709–4718.PubMedGoogle Scholar
  95. Livingston, B. D., Jacobs, J. L., Glick, M. C., and Troy, F. A., 1988, Extended polysialic acid chains (n>55) in glycoproteins from human neuroblastoma cells, J. Biol. Chem. 263: 9443–9448.PubMedGoogle Scholar
  96. Low, M. G., and Saltiel, A. R., 1988, Structural and functional roles of glycosyl-phosphatidylinositol in membranes, Science 239: 268–275.PubMedGoogle Scholar
  97. Manjunath, P., and Sairam, M. R., 1982, Biochemical, biological, and immunological properties of chemically deglycosylated human choriogonadotropin, J. Biol. Chem. 257: 7109–7115.PubMedGoogle Scholar
  98. Maresh, G. A., Chemoff, E. A. G., and Culp, L. A., 1984, Heparan sulfate proteoglycans of human neuroblastoma cells: Affinity fractionation on columns of platelet factor-4, Arch. Biochem. Biophys. 233: 428–437.PubMedGoogle Scholar
  99. Margolis, R. U., 1967, Acid mucopolysaccharides and proteins of bovine whole brain, white matter and myelin, Biochim. Biophys. Acta 141: 91–102.PubMedGoogle Scholar
  100. Margolis, R. K., and Margolis, R. U., 1970, Sulfated glycopeptides from rat brain glycoproteins, Biochemistry 9: 4389–4396.PubMedGoogle Scholar
  101. Margolis, R. U., and Margolis, R. K., 1972, Sulfate turnover in mucopolysaccharides and glycoproteins of brain, Biochim. Biophys. Acta 264: 426–431.PubMedGoogle Scholar
  102. Margolis, R. K., and Margolis, R. U., 1973, The turnover of hexosamine and sialic acid in glycoproteins and mucopolysaccharides of brain, Biochim. Biophys. Acta 304: 413–420.PubMedGoogle Scholar
  103. Margolis, R. U., and Margolis, R. K., 1974, Distribution and metabolism of mucopolysaccharides and glycoproteins in neuronal perikaria, astrocytes, and oligodendroglia, Biochemistry 13: 2849–2852.PubMedGoogle Scholar
  104. Margolis, R. K., and Margolis, R. U., 1979, Structure and distribution of glycoproteins and glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 45–73, Plenum Press, New York.Google Scholar
  105. Margolis, R. K., and Margolis, R. U., 1983, Distribution and characteristics of polysialosyl oligosaccharides in nervous tissue glycoproteins, Biochem. Biophys. Res. Commun. 116: 889–894.PubMedGoogle Scholar
  106. Margolis, R. K., Margolis, R. U., Preti, C., and Lai, D., 1975a, Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain, Biochemistry 14: 4797–4804.PubMedGoogle Scholar
  107. Margolis, R. K., Preti, C., Chang, L., and Margolis, R. U., 1975b, Metabolism of the protein moiety of brain glycoproteins, J. Neurochem. 25: 707–709.PubMedGoogle Scholar
  108. Margolis, R. K., Crockett, C. P., Kiang, W.-L., and Margolis, R. U., 1976a, Glycosaminoglycans and glycoproteins associated with rat brain nuclei, Biochim. Biophys. Acta 451: 465–469.PubMedGoogle Scholar
  109. Margolis, R. K., Preti, C., Lai, D., and Margolis, R. U., 1976b, Developmental changes in brain glycoproteins, Brain Res. 112: 363–369.PubMedGoogle Scholar
  110. Margolis, R. K., Thomas, M. D., Crockett, C. P., and Margolis, R. U., 1979, Presence of chondroitin sulfate in the neuronal cytoplasm, Proc. Natl. Acad. Sci. USA 76: 1711–1715.PubMedGoogle Scholar
  111. Margolis, R. K., Salton, S. R. J., and Margolis, R. U., 1983a, Complex carbohydrates of cultured PC12 pheochromocytoma cells. Effects of nerve growth factor and comparison with neonatal and mature rat brain, J. Biol. Chem. 258: 4110–4117.PubMedGoogle Scholar
  112. Margolis, R. K., Salton, S. R. J., and Margolis, R. U., 1983b, Structural features of the nerve growth factor inducible large external glycoprotein of PC12 pheochromocytoma cells and brain, J. Neurochem. 41: 1635–1640.PubMedGoogle Scholar
  113. Margolis, R. K., Finne, J., Krusius, T., and Margolis, R. U., 1984, Structural studies on glycoprotein oligosaccharides of chromaffin granule membranes and dopamine ß-hydroxylase, Arch. Biochem. Biophys. 228: 443–449.PubMedGoogle Scholar
  114. Margolis, R. K., Greene, L. A., and Margolis, R. U., 1986, Poly(N-acetyllactosaminyl) oligosaccharides in glycoproteins of PC12 pheochromocytoma cells and sympathetic neurons, Biochemistry 25: 3463–3468.PubMedGoogle Scholar
  115. Margolis, R. K., Salton, S. R. J., and Margolis, R. U., 1987a, Effects of nerve growth factor-induced differentiation on the heparan sulfate of PC12 pheochromocytoma cells and comparison with developing brain. Arch. Biochem. Biophys. 257: 107–114.Google Scholar
  116. Margolis, R. K., Ripellino, J. A., Goossen B., Steinbrich, R., and Margolis, R. U., 1987b, Occurrence of the Hnk-1 epitope (3-sulfoglucuronic acid) in PC12 pheochromocytoma cells, chromaffin granule membranes, and chondroitin sulfate proteoglycans, Biochem. Biophys. Res. Commun. 145: 1142–1148.Google Scholar
  117. Margolis, R. K., Goossen, B., and Margolis, R. U., 1988, Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain, Biochemistry 27: 3454–3458.PubMedGoogle Scholar
  118. Margolis, R. U., Margolis, R. K., Chang, L., and Preti, C., 1975, Glycosaminoglycans of brain during development, Biochemistry 14: 85–88.PubMedGoogle Scholar
  119. Margolis, R. U., Ledeen, R. W., Sbaschnig-Agler, M., Byrne, M. C., Klein, R. L., Douglas, B. H., II, and Margolis, R. K., 1987, Complex carbohydrate composition of large dense-cored vesicles from sympathetic nerve, J. Neurochem. 49:1839–1844.Google Scholar
  120. Margolis, R. U., Fischer-Colbrie, R., and Margolis, R. K., 1988, Poly(N-acetyllactosaminyl) oligosaccharides of chromaffin granule membrane glycoproteins, J. Neurochem. 51: 1819–1824.PubMedGoogle Scholar
  121. Matthew, W. D., Greenspan, R. J., Lander, A. D., and Reichardt, L. F., 1985, Immunopurification and characterization of a neuronal heparan sulfate proteoglycan, J. Neurosci. 5: 1842–1850.PubMedGoogle Scholar
  122. McGuire, J. C., Greene, L. A., and Furano, A. V., 1978, Ngf stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells, Cell 15: 357–365.PubMedGoogle Scholar
  123. McKenzie, J. L., Allen, A. K., and Fabre, J. W., 1981, Biochemical characterization including amino acid and carbohydrate compositions of canine and human brain Thy-1 antigen, Biochem. J. 197: 629–636.Google Scholar
  124. Merkle, R. K., and Cummings, R. D., 1987, Lectin affinity chromatography of glycopeptides, Methods Enzymol. 138: 232–259.PubMedGoogle Scholar
  125. Merkle, R. K., and Heifetz, A., 1984, Enzymatic sulfation of N-glycosidically linked oligosaccharides by endothelial cell membranes, Arch. Biochem. Biophys. 234: 460–467.PubMedGoogle Scholar
  126. Merlie, J. P., Sebbane, R., Tzartos, S., and Lindstrom, J., 1982, Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells, J. Biol. Chem. 257: 2694–2701.PubMedGoogle Scholar
  127. Miller, R. R., and Waechter, C. J., 1984, Structural features and some binding properties of proteoheparan sulfate enzymatically labeled by calf brain microsomes, Arch. Biochem. Biophys. 228: 247–257.PubMedGoogle Scholar
  128. Moos, M., Tacke, R., Scherer, H., Teplow, D., Früh, K., and Schachner, M., 1988, Neural adhesion molecule Ll as a member of the immunoglobulin superfamily with binding domains similar to fibronectin, Nature 334: 701–703.PubMedGoogle Scholar
  129. Morris, J. E., and Ting, Y.-P., 1981, Comparison of proteoglycans extracted by saline and guanidinium chloride from cultured chick retinas, J. Neurochem. 37: 1594–1602.PubMedGoogle Scholar
  130. Morris, J. E., Hopwood, J. J., and Dorfman, A., 1977, Biosynthesis of glycosaminoglycans in the developing retina, Dey. Biol. 58: 313–327.Google Scholar
  131. Moms, J. E., Ting, Y.-P., and Birkholz-Lambrecht, A., 1984, Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas, J. Neurochem. 42: 798–809.Google Scholar
  132. Moms, J. E., Yanagishita, M., and Hascall, V., 1987, Proteoglycans synthesized by embryonic chicken retina in culture: Composition and compartmentalization, Arch. Biochem. Biophys. 258: 206–218.Google Scholar
  133. Morris, R., 1985, Thy-1 in developing nervous tissue, Dey. Neurosci. 7: 133–160.Google Scholar
  134. Nakanishi, S., 1983, Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice, Dey. Biol. 95: 305–316.Google Scholar
  135. Needham, L. K., Adler, R., and Hewitt, A. T., 1988, Proteoglycan synthesis in flat cell-free cultures of chick embryo retinal neurons and photoreceptors, Dey. Biol. 126: 304–314.Google Scholar
  136. Obendorf, D., Schwarzenbrunner, U., Fischer-Colbrie, R., Laslop, A., and Winkler, H., 1988, Immunological characterization of a membrane glycoprotein of chromaffin granules: Its presence in endocrine and exocrine tissues, Neuroscience 25: 343–351.PubMedGoogle Scholar
  137. Olden, K., Bernard, B. A., Humphries, M. J., Yeo, K.-T., White, S. L., Newton, S. A., Bauer, H. C., and Parent, J. B., 1985, Function of glycoprotein glycans, Trends Biochem. Sci. 10: 78–82.Google Scholar
  138. Osawa, T., and Tsuji, T., 1987, Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins, Annu. Rev. Biochem. 56: 21–42.PubMedGoogle Scholar
  139. Parekh, R. B., Tse, A. G. D., Dwek, R. A., Williams, A. F., and Rademacher, T. W., 1987, Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1, Embo J. 6: 1233–1244.PubMedGoogle Scholar
  140. Porrello, K., and LaVail, M. M. 1986, Immunocytochemical localization of chondroitin sulfates in the interphotoreceptor matrix of the normal and dystrophic rat retina, Curr. Eye Res. 5: 981–994.PubMedGoogle Scholar
  141. Porrello, K., Yasumura, D., and LaVail, M. M., 1986, The interphotoreceptor matrix in Rcs rats: Histochemical analysis and correlation with the rate of retinal degeneration, Exp. Eye Res. 43: 413–430.PubMedGoogle Scholar
  142. Prives, J., and Bar-Sagi, D., 1983, Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells, J. Biol. Chem. 258: 1775–1780.PubMedGoogle Scholar
  143. Pryde, J. G., and Phillips, J. H., 1986, Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114, Biochem. J. 233: 525–533.PubMedGoogle Scholar
  144. Ratner, N., Hong, D., Lieberman, M. A., Bunge, R. P., and Glaser, L., 1988, The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein, Proc. Natl. Acad. Sci. 85: 6992–6996.PubMedGoogle Scholar
  145. Reddy, P., Jacquier, A. C., Abovich, N., Petersen, G., and Rosbash, M., 1986, The period clock locus of D. melanogaster codes for a proteoglycan, Cell 46: 53–61.PubMedGoogle Scholar
  146. Richter-Landsberg, C., Greene, L. A., and Shelanski, M. L., 1985, Cell surface Thy-l-cross-reactive glycoprotein in cultured PC12 cells: Modulation of nerve growth factor and association with the cytoskeleton, J. Neurosci. 5: 468–476.PubMedGoogle Scholar
  147. Ripellino, J. A., and Margolis, R. U., 1989, Structural properties of the heparan sulfate proteoglycans of brain, J. Neurochem. 52: 807–812.PubMedGoogle Scholar
  148. Ripellino, J. A., Klinger, M. M., Margolis, R. U., and Margolis, R. K., 1985, The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain, J. Histochem. Cytochem. 33: 1060–1066.PubMedGoogle Scholar
  149. Ripellino, J. A., Bailo, M., Margolis, R. U., and Margolis, R. K., 1988, Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum, J. Cell Biol. 106: 845–855.PubMedGoogle Scholar
  150. Ripellino, J. A., Margolis, R. U., and Margolis, R. K., 1989a, Oligosaccharide composition, localization, and developmental changes of a brain–specific (F3–87–8) glycoprotein, J. Neurochem.,in pressGoogle Scholar
  151. Ripellino, J. A., Margolis, R. U., and Margolis, R. K., 1989b, Immunoelectron microscopic localization of hyaluronic acid binding region and link protein epitopes in brain, J. Cell Biol.,in press.Google Scholar
  152. Rogers, S. L., McCarthy, J. B., Palm, S. L., Furcht, L. T., and Letourneau, P. C., 1985, Neuron-specific interactions with two neurite-promoting fragments of fibronectin, J. Neurosci. 5: 369–378.PubMedGoogle Scholar
  153. Roth, J., Taatjes, D. J., Bitter-Suermann, D., and Finne, J., 1987, Polysialic acid units are spatially and temporally expressed in developing postnatal rat kidney, Proc. Natl. Acad. Sci. USA 84: 1969–1973.PubMedGoogle Scholar
  154. Roussel, P., Lamblin, G., Degand, P., Walker-Nasir, E., and Jeanloz, R. W., 1975, Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis, J. Biol. Chem. 250: 2114–2122.PubMedGoogle Scholar
  155. Sajovic, P., Kouvelas, E., and Trenkner, E., 1986, Probable identity of Nile glycoprotein and the highmolecular-weight component of Ll antigen, J. Neurochem. 47: 541–546.PubMedGoogle Scholar
  156. Salton, S. R. J., Margolis, R. U., and Margolis, R. K., 1983a, Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC 12 pheochromocytoma cells, J. Neurochem. 41: 1165–1170.Google Scholar
  157. Salton, S. R. J., Richter-Landsberg, C., Greene, L. A., and Shelanski, M. L., 1983b, Nerve growth factor-inducible large external (Nile) glycoprotein: Studies of a central and peripheral neuronal marker, J. Neurosci. 3: 441–454.PubMedGoogle Scholar
  158. Schauer, R. (ed.), 1982, Sialic Acids—Chemistry, Metabolism and Function, Springer-Verlag, Berlin.Google Scholar
  159. Schubert, D., Schroeder, R., LaCorbiere, M., Saitoh, T., and Cole, G., 1988, Amyloid ß protein precursor is possibly a heparan sulfate proteoglycan core protein, Science 241: 223–226.PubMedGoogle Scholar
  160. Seiger, A., Almqvist, P., Granholm, A.-C., and Olson, L., 1986, On the localization of Thy-1-like immunoreactivity in the rodent and human nervous system, Med. Biol. 64: 109–117.PubMedGoogle Scholar
  161. Selkoe, D. J., Podlisny, M. B., Joachim, C. L., Vickers, E. A., Lee, G., Fritz, L. C., and Oltersdorf, T., 1988, 13-Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues, Proc. Natl. Acad. Sci. USA 85: 7341–7345.PubMedGoogle Scholar
  162. Simpson, D. L., Thome, D. R., and Loh, H. H., 1976, Sulfated glycoproteins, glycolipids and glycosaminoglycans from synaptic plasma and myelin membranes: Isolation and characterization of sulfated glycopepetides, Biochemistry 15: 5449–5457.PubMedGoogle Scholar
  163. Slomiany, B. L., and Meyer, K., 1972, Isolation and structural studies of sulfated glycoproteins of hog gastric mucosa, J. Biol. Chem. 247: 5062–5070.PubMedGoogle Scholar
  164. Spillmann, D., and Finne, J., 1987, Poly-N-acetyllactosamine glycans of cellular glycoproteins: Predominance of linear chains in mouse neuroblastoma and rat pheochromocytoma cell lines, J. Neurochem. 49: 874–883.PubMedGoogle Scholar
  165. Stallcup, W. B., and Beasley, L., 1985, Involvement of the nerve growth factor-inducible large external glycoprotein (Nile) in neurite fasciculation in primary cultures of rat brain, Proc. Natl. Acad. Sci. USA 82: 1276–1280.PubMedGoogle Scholar
  166. Stallcup, W. B., and Beasley, L., 1987, Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan, J. Neurosci. 7: 2737–2744.PubMedGoogle Scholar
  167. Stallcup, W. B., Beasley, L., and Levine, J., 1983, Cell-surface molecules that characterize different stages in the development of cerebellar intemeurons, Cold Spring Harbor Symp. Quant. Biol. 48: 761–774.PubMedGoogle Scholar
  168. Stallcup, W. B., Beasley, L. L., and Levine, J. M., 1985, Antibody against nerve growth factor-inducible large external (Nile) glycoprotein labels nerve fiber tracts in the developing rat nervous system, J. Neurosci. 5: 1090–1101.PubMedGoogle Scholar
  169. Sweeley, C. C., and Nunez, H. A., 1985, Structural analysis of glycoconjugates by mass spectrometry and nuclear magnetic resonance spectroscopy, Annu. Rev. Biochem. 54: 765–801.PubMedGoogle Scholar
  170. Tan, S.-S., Crossin, K. L., Hoffman, S., and Edelman, G. M., 1987, Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest cell distribution, Proc. Natl. Acad. Sci. USA 84: 7977–7981.PubMedGoogle Scholar
  171. Tisdale, E. J., and Tartakoff, A. M., 1988, Extensive labeling with [3H]ethanolamine of a hydrophilic protein of animal cells, J. Biol. Chem. 263: 8244–8252.PubMedGoogle Scholar
  172. Tulsiani, D. R. P., and Touster, O., 1987, Substrate specificities of rat kidney lysosomal and cytosolic a-nmannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism, J. Biol. Chem. 262: 6506–6514.PubMedGoogle Scholar
  173. Waechter, C. J., Schmidt, J. W., and Catterall, W. A., 1983, Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells, J. Biol. Chem. 258: 5117–5123.PubMedGoogle Scholar
  174. Weber, R. J., Hill, J. M., and Pert, C. B., 1988, Regional distribution and density of Thy 1.1 in rat brain and its relation to subpopulations of neurons, J. Neuroimmunol. 17: 137–145.Google Scholar
  175. West, C. M., 1986, Current ideas on the significance of protein glycosylation, Mol. Cell. Biochem. 72: 320.Google Scholar
  176. Wieland, F., Paul, G., and Sumper, M., 1985, Halobacterial flagellins are sulfated glycoproteins, J. Biol. Chem. 260: 15180–15185.PubMedGoogle Scholar
  177. Wight, T. N., and Mecham, R. P. (eds.), 1987. Biology of Proteoglycans, Academic Press, New York.Google Scholar
  178. Williams, A. F., and Barclay, A. N., 1988, The immunoglobulin superfamily—Domains for cell surface recognition, Annu. Rev. lmmunol. 6: 381–406.Google Scholar
  179. Williams, A. F., and Gagnon, J., 1982, Neuronal cell Thy-1 glycoprotein: Homology with immunoglobulin, Science 216: 696–703.PubMedGoogle Scholar
  180. Winkler, H., Apps, D. K., and Fischer-Colbrie, R., 1986, The molecular function of adrenal chromaffin granules: Established facts and unresolved topics, Neuroscience 18: 261–290.Google Scholar
  181. Yamashita, K., Hitoi, A., and Kobata, A., 1983a, Structural determinants of Phaseolus vulgaris erythroagglutinating lectin for oligosaccharides, J. Biol. Chem. 258: 14753–14755.Google Scholar
  182. Yamashita, K., Ueda, I., and Kobata, A., 1983b, Sulfated asparagine-linked sugar chains of hen egg albumin, J. Biol. Chem. 258: 14144–14147.PubMedGoogle Scholar
  183. Zanini, A., Giannattasio, G., Nussdorfer, G., Margolis, R. K., Margolis, R. U., and Meldolesi, J., 1980, Molecular organization of prolactin granules. H. Characterization of glycosaminoglycans and glycoproteins of the bovine prolactin granule matrix, J. Cell Biol. 86: 260–272.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Renée K. Margolis
    • 1
  • Richard U. Margolis
    • 2
  1. 1.Department of PharmacologyState University of New York, Health Science Center at BrooklynBrooklynUSA
  2. 2.Department of PharmacologyNew York University Medical CenterNew YorkUSA

Personalised recommendations