Neurobiology of Glycoconjugates pp 421-447 | Cite as
Inborn Errors of Complex Carbohydrate Catabolism
Abstract
Complex carbohydrates of the nervous system are degraded in lysosomes by the sequential action of a group of exoglycosidases known collectively as the lysosomal hydrolases. Inherited defects in the synthesis, assembly, or turnover of these hydrolases lead to storage diseases in humans (Spranger, 1987) and a variety of domestic animals. Those involving the nervous system result in spectacular neuropathology and provide the best evidence for the types of glycoconjugates synthesized by nervous tissue, as well as their rate of turnover. For example, in Tay—Sachs disease, storage material (GM2 ganglioside) predominates in nervous tissue, especially motor neurons, and is virtually absent from visceral tissue. The variable level of accumulation of GM2 in different brain regions (identified morphologically as multilamellar cytosomes) can be related to different levels of synthesis and degradation. This clearly manifests itself in patients with partial hexosaminidase (HexA) deficiencies, who exhibit symptoms of motor neuron disease, or spinocerebellar degeneration with other neuronal function (such as vision and intelligence) relatively intact. The absence of GM2 storage outside the CNS reflects the lack of GM2 synthesis in nonneural tissue. However, since lysosomal hydrolases are synthesized constitutively in all tissues, GM2 can be fed to fibroblasts from HexA-deficient patients, and its steady accumulation observed. Thus, storage patterns in patients with inherited enzyme defects can be used to give an accurate reflection of glycoconjugate content of the CNS versus nonneural tissue and this will be emphasized on an enzyme/disease, case-by-case basis.
Keywords
Heparan Sulfate Fabry Disease Storage Disease Inborn Error Neuronal Ceroid LipofuscinosisPreview
Unable to display preview. Download preview PDF.
References
- Akasaki, M., Sugahara, K., Funakoshi, I., Aula, P., and Yamashina, I., 1976, Characterization of a mannose-containing glycoasparagine isolated from urine of a patient with aspartylglycosaminuria, FEBS Leu. 69: 191.CrossRefGoogle Scholar
- Autio, S., 1972, Aspartylglucosaminuria: Analysis of thirty-four patients, J. Ment. Def. Res. Monogr. Ser. 1: 1–93.Google Scholar
- Bach, G., Friedman, R., Weismann, B., and Neufeld, E. F., 1972, The defect in the Hurler and Scheie syndrome: Deficiency of a-L-iduronidase, Proc. Natl. Acad. Sci. USA 69: 2048–2051.PubMedCrossRefGoogle Scholar
- Bach, G., Eisenberg, F., Cantz, M., and Neufeld, E. F., 1973, The defect in Hunter’s disease: Deficiency of sulfoiduronate sulfatase, Proc. Natl. Acad. Sci. USA 70: 2134–2138.PubMedCrossRefGoogle Scholar
- Baum, K. J., and Rome, L. H., 1986, Genetic evidence for transmembrane acetylation by lysosomes, Science 233: 1087–1089.CrossRefGoogle Scholar
- Baumkotter, J., Cantz, M., Mendla, K., Baumann, W., Friebolin, H., Gehler, J., and Spranger, J., 1985, N-acetylneuraminic acid storage disease, Hum. Genet. 71: 155–159.PubMedCrossRefGoogle Scholar
- Beck, M., Bender, S. W., Reiter, H. L., Otto, W., Bassler, R., Dancygier, H., and Gehler, J., 1984, Neuraminidase deficiency presenting as non-immune hydrops, Eur. J. Pediat. 143: 135–139.CrossRefGoogle Scholar
- Bell, C. E., Jr., Sly, W. S., and Brot, F. E., 1977, Human p-glucuronidase deficiency mucopolysac-charidosis, J. Clin. Invest. 598: 97–105.CrossRefGoogle Scholar
- Ben-Yoseph, Y., Pack, B. A., Mitchell, D. A., Elwell, D. G., Potior, M., Melancon, S. B., and Nadler, H. L., 1986, Characterization of the mutant N-acetylglucosaminyl-phosphotransferase in I-cell disease and pseudohurler polydystrophy: Complementation analysis and kinetic studies, Enzymology 35: 106–116.Google Scholar
- Bolhuis, P. A., Oonk, J. G. W., Kamp, P. E., Ris, A. J., Michalski, J. C., Overdijk, B., and Reuser, A. J. J., 1987, Ganglioside storage, hexosaminidase lability and urinary oligosaccharides in adult Sandhoff’s disease, Neurology 37: 75–81.PubMedCrossRefGoogle Scholar
- Borrone, C., Gatti, R., Trias, X., and Durand, P., 1974, Fucosidosis: Clinical, biochemical, immunologic and genetic studies in two new cases, J. Pediatr. 84: 727–730.PubMedCrossRefGoogle Scholar
- Cantz, M., Gehler, J., and Spranger, J., 1977, Mucolipidosis I: Increased sialic acid content and deficiency of an a-N-acetylneuraminidase in cultured fibroblasts, Biochem. Biophys. Res. Commun. 74: 732–738.PubMedCrossRefGoogle Scholar
- Carroll, M., Dance, N., Masson, P. K., Robinson, D., and Winchester, B. G., 1972, Human mannosidosis—The enzymic defect, Biochem. Biophys. Res. Commun. 49: 579–583.PubMedCrossRefGoogle Scholar
- Cashman, N. R., Antel, J. P., Hancock, L. W., Dawson, G., Horwitz, A. L., Johnson, W. G., Huttenlocher, P. R., and Wolhnan, R. L., 1986, N-acetyl- 3-hexosaminidase 13-locus defect and juvenile motor neuron disease: A case study, Ann. Neurol. 19: 568–572.PubMedCrossRefGoogle Scholar
- Chen, W. W., Moser, A. B., and Moser, H. W., 1981, Role of lysosomal acid ceramidase in the metabolism of ceramide in human fibroblasts, Arch. Biochem. Biophys. 208: 444–455.PubMedCrossRefGoogle Scholar
- Christomanou, H., and Beyer, D., 1983, Absence of alpha fucosidase activity in two sisters showing a different phenotype, Eur. J. Pediatr. 140: 27–29.PubMedCrossRefGoogle Scholar
- Conary, J. P., Lorkowski, G., Schmidt, B., Pohlmann, R., Nagel, G., Meyer, H. E., Krentler, C., Cully, J., Hasilik, A., and von Figura, K., 1987, Genetic heterogeneity of steroid sulfatase deficiency revealed with cDNA for human steroid sulfatase, Biochem. Biophys. Res. Commun. 144: 1010–1017.PubMedCrossRefGoogle Scholar
- Cooper, A., Sardharwalla, I. B., and Roberts, M. M., 1986, Human ß-mannosidosis, N . Engl. J. Med. 315: 1231.PubMedCrossRefGoogle Scholar
- Crandall, B. F., Philippart, M., Brown, W. J., and Bluestone, D. A., 1982, Mucolipidosis IV, Am. J. Med. Genet. 12: 301–308.PubMedCrossRefGoogle Scholar
- Dawson, G., 1982, Evidence for two distinct forms of mammalian ß-mannosidase, J . Biol. Chem. 257: 3369–3371.PubMedGoogle Scholar
- Dawson, G., and Glaser, P., 1987, Abnormal cathepsin B deficiency in neuronal ceroid lipofuscinosis can be explained by peroxide inhibition, Biochem. Biophys. Res. Commun. 147: 267–274.PubMedCrossRefGoogle Scholar
- Dawson, G., Matalon, R., and Dorfman, A., 1972, Glycosphingolipids in cultured human skin fibroblasts from patients with inborn errors of glycosphingolipid and mucopolysaccharide metabolism, J. Biol. Chem. 247: 5951–5958.PubMedGoogle Scholar
- Dawson, G., McCabe, N., Hancock, L. W., and Johnson, K., 1988, Molecular biology of oligosaccharide storage disease, Trans. Am. Soc. Neurochem. 19: 296.Google Scholar
- Dekaban, A. S., and Patton, V. M., 1971, Hurler’s and Sanfilippo’s variants of mucopolysaccharidosis; cerebral pathology and lipid chemistry, Arch. Pathol. 91: 434–449.PubMedGoogle Scholar
- Dewji, N. N., Wenger, D. A., and O’Brien, J. S., 1987, Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor, Proc. Natl. Acad. Sci. USA 84: 8652–8656.PubMedCrossRefGoogle Scholar
- Dorfman, A., and Matalon, R., 1972, The mucopolysaccharidoses, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1218–1272, McGraw-Hill, New York.Google Scholar
- Dorfman, A., Matalon, R., Cifonelli, J. A., Thompson, J., and Dawson, G., 1972, The degradation of acid mucopolysaccharides and the mucopolysaccharidoses, in: Sphingolipidoses and Allied Disorders ( B. W. Volk and S. M. Aronson, eds.), pp. 195–210, Plenum Press, New York.CrossRefGoogle Scholar
- Durand, P., Borrone, C., and Della Cella, G., 1969, Fucosidosis, J. Pediatr. 75: 665–674.CrossRefGoogle Scholar
- Durand, P., Gatti, R., Cavalieri, S., Borrone, C., Tondeur, M., Michalski, J.-C., and Strecker, G., 1977, Sialidosis (mucolipidoses I), Heiv. Paediatr. Acta 32: 391–400.Google Scholar
- Eto, Y., Tahara, T., Tokoro, T., and Maekawa, K., 1983, Various sulfatase activities in leukocytes and cultured skin fibroblasts from heterozygotes for the multiple sulfatase deficiency (mucosulfatidosis), Pediatr. Res. 17: 97–100.PubMedCrossRefGoogle Scholar
- Fois, A., Balestri, P., Farnetani, G. M. S., Mancini, P., Borgogni, M. A., Margollicci, M. A., Molinelli, M., Alessandrini, C., and Gerli, R., 1987, Free sialic acid storage disease: A new Italian case, Eur. J. Pediatr. 146: 195–198.PubMedCrossRefGoogle Scholar
- Fontaine, G., Biserte, G., Montreuil, J., DuPont, A., and Farriaux, J. P., 1968, La sialurie: un trouble metabolique original, HeIv. Paediatr. Acta 23 (Suppl. XVII): 3–32.Google Scholar
- Galjaard, H., Hoogeveen, A., Keijzer, W., DeWit-Verbeek, H. A., Reusor, A. J. J., Ho, M. W., and Robinson, D., 1975, Genetic heterogeneity in GMr-gangliosidosis, Nature 257: 60–62.PubMedCrossRefGoogle Scholar
- Gatti, R., Borrone, C., Durand, P., DeVirtilis, S., Sanna, G., Cao, A., von Figura, K., Kresse, H., and Paschke, E., 1982, Sanfilippo Type D disease, Eur. J. Pediatr. 138: 168–171.PubMedCrossRefGoogle Scholar
- Gilbert, E. F., Dawson, G., zu Rhein, G. M., Opitz, J. M., and Spranger, J. W., 1973, I-cell disease: Mucolipidosis II, Z. Kinderheilkd. 114: 259–292.PubMedCrossRefGoogle Scholar
- Gilles, F. H., and Deuel, R. K., 1971, Neuronal cytoplasmic globules in the brain in Morquio’s syndrome, Arch. Neurol. 25: 393–403.PubMedCrossRefGoogle Scholar
- Gonzalex-Noreiga, A., Grubb, J. H., Talkud, V., and Sly, W. S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol. 85: 839–852.CrossRefGoogle Scholar
- Graves, P. N., Grabowski, G. A., Ludman, M. D., Palese, P., and Smith, F. I., 1986, Human acid ßglucosidase: Northern blot and SI nuclease analysis of mRNA from HeLa cells and normal and Gaucher disease fibroblasts, Am. J. Hum. Genet. 39: 763–774.PubMedGoogle Scholar
- Hall, C. W., Cantz, M., and Neufeld, E. F., 1973, A ß-glucuronidase deficiency mucopolysaccharidosis: Studies in cultured fibroblasts, Arch. Biochem. Biophys. 155: 32–38.PubMedCrossRefGoogle Scholar
- Hall, C. W., Liebaers, I., DiNatale, P., and Neufeld, E. F., 1978, Enzymatic diagnosis of the genetic mucopolysaccharide storage diseases, Methods Enzymol. 50: 439–455.PubMedCrossRefGoogle Scholar
- Hancock, L. W., 1987, Impaired processing of lysosomal enzymes in generalized N-acetylneuraminic acid storage disease, J. Cell Biol. 105: 249a.Google Scholar
- Hancock, L. W., Thaler, M. M., Horwitz, A. L., and Dawson, G., 1982, Generalized N-acetylneuraminic acid storage disease, J. Neurochem. 38: 803–809.PubMedCrossRefGoogle Scholar
- Hancock, L. W., Horwitz, A. L., and Dawson, G., 1983, N-acetylneuraminic acid and sialoglycoconjugate metabolism in cultured fibroblasts from a patient with generalized N-acetylneuraminic acid storage disease, Biochim. Biophys. Acta 760: 42–52.PubMedCrossRefGoogle Scholar
- Hancock, L. W., Horwitz, A. L., Cashman, N. R., Antel, J. P., and Dawson, G., 1985, N-acetyl-ßhexosaminidase B deficiency in cultured fibroblasts from a patient with progressive motor neuron disease, Biochem. Biophys. Res. Commun. 130: 1185–1192.PubMedCrossRefGoogle Scholar
- Hancock, L. W., Ricketts, J. P., and Hildreth, J., 1988, Impaired proteolytic processing of lysosomal Nacetyl-ß-hexosaminidase in cultured fibroblasts from patients with infantile generalized N-acetylneuraminic acid storage disease, Biochem. Biophys. Res. Commun. 152: 83–92.PubMedCrossRefGoogle Scholar
- Hannun, Y. A., and Bell, R. A., 1987, Lysoglycosphingolipids in lipid storage diseases, Science 235: 670–674.PubMedCrossRefGoogle Scholar
- Hasilik, A., and Neufeld, E. F., 1980, Biosynthesis of lysosomal enzymes in fibroblasts: Synthesis as precursors of higher molecular weights, J. Biol. Chem. 255: 4937–4945.PubMedGoogle Scholar
- Hasilik, A., Waheed, A., and von Figura, K., 1981, Lysosomal hydrolase synthesis and processing, Biochem. Biophys. Res. Commun. 98: 761–767.PubMedCrossRefGoogle Scholar
- Hildreth, J., Sachs, L., and Hancock, L. W., 1986, N-Acetylneuraminic acid accumulation in a buoyant lysosomal fraction of cultured fibroblasts from patients with infantile generalized N-acetylneuraminic acid storage disease, Biochem. Biophys. Res. Commun. 139: 838–844.PubMedCrossRefGoogle Scholar
- Hill, D. F., Bullock, P. N., Chiappelli, F., and Rome, L. H., 1985, Binding and internalization of lysosomal enzymes by primary cultures of rat glia, J. Neurosci. Res. 14: 35–47.PubMedCrossRefGoogle Scholar
- Horwitz, A. L., 1979, Genetic complementation studies of multiple sulfatase deficiency, Proc. Natl. Acad. Sci. USA 76: 6496–6498.PubMedCrossRefGoogle Scholar
- Horwitz, A. L., and Dorfman, A., 1978, The enzymic defect in Morquio’s disease: The specificities of Nacetylhexosamine sulfatases, Biochem. Biophys. Res. Commun. 80: 819–825.PubMedCrossRefGoogle Scholar
- Horwitz, A. L., Warshawsky, L., King, J., and Burns, G., 1986, Rapid degradation of steroid sulfatase in multiple sulfatase deficiency, Biochem. Biophys. Res. Commun. 135: 389–396.PubMedCrossRefGoogle Scholar
- Ivy, G. O., Schotter, F., Wenzel, J., Baudry, M., and Lynch, G., 1984, Inhibition of lysosomal enzymes produces a rapid and massive accumulation of lipofuscin-like dense bodies in the CNS, Science 226: 985–987.PubMedCrossRefGoogle Scholar
- Jenner, F. A., and Pollitt, R. J., 1967, Large quantities of 2-acetamido-1-(13-L-aspartamido)-1,2-dideoxyglucose in the urine of mentally retarded siblings, Biochem. J. 103: 48–49.Google Scholar
- Johnson, K., and Dawson, G., 1985, Molecular defect in processing alpha-fucosidase in fucosidosis, Biochem. Biophys. Res. Commun. 133: 90–97PubMedCrossRefGoogle Scholar
- Jolly, R. D., Winchester, B. G., Gehler, J., Dorling, P. R., and Dawson, G., 1981, Mannosidosis: A comparative review of biochemical and related clinicopathological aspects of three forms of the disease, J. Appl. Biochem. 3: 273–291.Google Scholar
- Jonas, A. J., 1986, Studies of lysosomal sialic acid metabolism: Retention of sialic acid by Salla disease lysosomes, Biochem. Biophys. Res. Commun. 137: 175–181.PubMedCrossRefGoogle Scholar
- Jones, M. Z., and Dawson, G., 1981, Caprine ß-mannosidosis: Inherited deficiency of 13-D-mannosidase, J. Biol. Chem. 256: 5185–5188.PubMedGoogle Scholar
- Jones, M. Z., and Laine, R. A., 1981, Caprine 3-mannosidosis: Identification of the trisaccharide storage material, J. Biol. Chem. 256: 5181–5184.PubMedGoogle Scholar
- Jones, M. Z., Cunningham, J. G., Dade, A. W., Dawson, G., Laine, R. A., Williams, C. S. F., Alessi, D. M., Mostoskey, U. V., and Votro, J. R., 1982, Caprine 3-annosidosis, in: Animal Models of Inherited Metabolic Diseases (R. F. Desnick, D. F. Patterson, and D. G. Scarpelli, eds.), pp. 165–176, Liss, New York.Google Scholar
- Kaplan, A., Fischer, D., Achord, D., and Sly, W., 1977, Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts, J. Clin. Invest. 60: 1088–1093.PubMedCrossRefGoogle Scholar
- Kelly, T. E., and Graetz, G., 1977, Isolated acid neuraminidase deficiency: A distinct lysosomal storage disease, Am. J. Med. Genet. 1: 31–46.PubMedCrossRefGoogle Scholar
- Kint, J. A., Dacrement, G., Carton, D., Orye, E., and Hooft, C., 1973, Mucopolysaccharidosis: Secondarily induced abnormal distribution of lysosomal isoenzymes, Science 181: 352–354.PubMedCrossRefGoogle Scholar
- Kolodny, E. H., and Raghavan, S. S., 1983, GM2-gangliosidosis—ß-hexosaminidase mutants, Trends Neurosci. 6: 16–20.CrossRefGoogle Scholar
- Kornfeld, S., 1987, Trafficking of lysosomal enzymes, FASEB J. 1: 462–468.PubMedGoogle Scholar
- Koster, J. F., Nieremeijer, M. F., Loonen, M. C. B., and Galjaard, H., 1976, ß-Galactosidase deficiency in an adult: A biochemical and somatic cell genetic study on a variant of GMl-gangliosidosis, Clin. Genet. 9: 427.PubMedCrossRefGoogle Scholar
- Koto, A., Horwitz, A. L., Suzuki, K., Tiffany, C. W., and Suzuki, K., 1978, The Morquio syndrome: Neuropathology and biochemistry, Ann. Neurol. 4: 26–36.PubMedCrossRefGoogle Scholar
- Kresse, H., Paschke, E., von Figura, K., Gilberg, W., and Fuchs, W., 1980, Biochemical defect in Sanfilippo D, Proc. Natl. Acad. Sci. USA 77: 6822–6826.PubMedCrossRefGoogle Scholar
- Laney, P. A., Rattazzi, M. C., and Shows, T. B., 1974, Human 3-D-N-acetylhexosaminidases A and B: Expression and linkage relationships in somatic cell hybrids, Proc. Natl. Acad. Sci. USA 71: 1569–1573.CrossRefGoogle Scholar
- Laver, J., Fried, K., Beer, S. I., Ianci, T. C., Heyman, E., and Bach, G., 1983, Infantile lethal neuraminidase deficiency (sialidosis), Clin. Genet. 23: 97–101.PubMedCrossRefGoogle Scholar
- Ledeen, R., Salsman, K., Gonatas, J., and Taghavy, A., 1965, Structure comparisons of the major monosialogangliosides from brains of normal humans, gargoylism and late infantile systemic lipidosis, Part 1, J. Neuropathol. Exp. Neurol. 24: 341–351.PubMedCrossRefGoogle Scholar
- Lemansky, P., Bishop, D. F., Desnick, R. J., Hasilik, A., and von Figura, K., 1987, Synthesis and processing of a-galactosidase A in human fibroblasts: Evidence for different mutations in Fabry disease, J. Biol. Chem. 262: 2062–2065.PubMedGoogle Scholar
- Leroy, J. G., Ho, M. W., MacBrinn, M. C., Zielke, K., Jacob, J., and O’Brien, J. S., 1972, I-cell disease: Biochemical studies, Pediatr. Res. 6: 752–757.PubMedCrossRefGoogle Scholar
- Little, L. E., Mueller, Q. T., Honey, N. K., Shows, T. B., and Miller, A. L., 1986, Heterogeneity of Nacetyl-glucosamine-l-phosphotransferase within mucolipidosis III, J. Biol. Chem. 261: 733–738.PubMedGoogle Scholar
- Lowden, J. A., Callahan, J. W., Norman, M. G., Thain, M., and Pritchard, J. S., 1974, Juvenile GM! gangliosidosis, Arch. Neurol. 31: 20–24.CrossRefGoogle Scholar
- Mancini, G. M. S., Verheijen, F. W., and Galjaard, H., 1986, Free N-acetylneuraminic acid (NANA) storage disorders: Evidence for defective NANA transport across the lysosomal membrane, Hum. Genet. 73: 214–217.PubMedCrossRefGoogle Scholar
- Maroteaux, P., Humbel, R., Strecker, G., Michalski, J. C., and Mande, R., 1978, Un nouveau type de sialidose avec attiente renale: La nephrosialidose, Arch. Fr. Pediatr. 35: 819–829.PubMedGoogle Scholar
- Martiniuk, F., Mehler, M., Pellicer, A., Tzall, S., LaBadie, G., Hobart, C., Ellenbogen, A., and Hirschhorn, R., 1986, Isolation of a cDNA for human acid a-glucosidase and detection of genetic heterogeneity for mRNA in three a-glucosidase-deficient patients, Proc. Natl. Acad. Sci. USA 83: 9641–9644.PubMedCrossRefGoogle Scholar
- Matalon, R., and Dorfman, A., 1972, Hurler’s syndrome: An a-t-iduronidase deficiency, Biochem. Biophys. Res. Commun. 47: 959–966.PubMedCrossRefGoogle Scholar
- Matalon, R., and Dorfman, A., 1974, Sanfilippo A syndrome: Sulfamidase deficiency in cultured skin fibroblasts and liver, J. Clin. Invest. 54: 907–912.PubMedCrossRefGoogle Scholar
- Matalon, R., Cifonelli, J. A., Zellweger, H., and Dorfman, A., 1968, Lipid abnormalities in a variant of the Hurler syndrome, Proc. Natl. Acad. Sci. USA, 59: 1097–1102.PubMedCrossRefGoogle Scholar
- Matalon, R., Arbogast, B., Justice, P., Brandt, I. K., and Dorfman, A., 1974a, Morquio’s syndrome: Deficiency of a chondroitin sulfate N-acetyl-hexosamine sulfate sulfatase, Biochem. Biophys. Res. Commun. 61: 759.PubMedCrossRefGoogle Scholar
- Matalon, R., Arbogast, B., and Dorfman, A., 1974b, Deficiency of chondroitin sulfate N-acetyl-galactosamine-4-sulfate sulfatase in Maroteaux—Lamy syndrome, Biochem. Biophys. Res. Commun. 61: 1450–1457.PubMedCrossRefGoogle Scholar
- Moser, H. W., Prensky, A. L., Wolfe, H. J., and Rosman, N. P., 1969, Farber’s lipogranulomatosis: Report of a case and demonstration of an excess of free ceramide and ganglioside, Am. J. Med. 47: 869–890.PubMedCrossRefGoogle Scholar
- Myerowitz, R., and Hogikyan, N. D., 1986, Different mutations in Ashkenazi Jewish and non-Jewish French Canadians with Tay–Sachs disease, Science 232: 1646–1648.PubMedCrossRefGoogle Scholar
- Myerowitz, R., and Proia, R. L., 1984, A cDNA clone for the a-chain of human ß-hexosaminidase; deficiency of the a-chain in mRNA in Ashkenazi Tay–Sachs fibroblasts, Proc. Natl. Acad. Sci. USA 81: 5396–5398.CrossRefGoogle Scholar
- Nakagawa, F., Schulte, B. A., and Spicer, S. S., 1986, Selective cytochemical demonstration of glycoconjugate containing terminal N-acetylgalactosamine on some brain neurons, J. Comp. Neurol. 243: 280–290.PubMedCrossRefGoogle Scholar
- Navon, R., Argov, Z., and Frisch, A., 1986, Hexosaminidase A deficiency in adults, Am. J. Med. Genet. 24: 179–196.PubMedCrossRefGoogle Scholar
- Norden, N. E., Lundblad, A., Svensson, S., and Autio, S., 1974, Characterization of two mannosecontaining oligosaccharides isolated from the urine of patients with mannosidosis, Biochemistry 13: 871–874.PubMedCrossRefGoogle Scholar
- O’Brien, J. S., 1972a, Sanfilippo syndrome: Profound deficiency of alpha-acetylglucosaminidase activity in organs and skin from type B patients, Proc. Natl. Acad. Sci. USA 69: 1720–1722.PubMedCrossRefGoogle Scholar
- O’Brien, J. S., 1972b, Gag-gangliosidosis, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 639–662, McGraw-Hill, New York.Google Scholar
- O’Brien, J. S., 1977, Neuraminidase deficiency in the cherry red spot-myoclonus syndrome, Biochem. Biophys. Res. Commun. 79: 1136–1141.PubMedCrossRefGoogle Scholar
- O’Brien, J. S., Willems, P. J., Fukushima, H., deWet, J. R., Darby, J. K., DiCioccio, R., Fowler, M. L., and Shows, T. B., 1987, Molecular biology of the alpha-L-fucosidase gene and fucosidosis, Enzyme 38: 45–53.PubMedGoogle Scholar
- O’Dowd, B., Quan, F., Willard, H. F., Lamhonwah, A. M., Komeluk, R. G., Lowden, J. A., Gravel, R. A., and Mahuran, D., 1985, Isolation of cDNA clones encoding the 3-hexosaminidase gene, Proc. Natl. Acad. Sci. USA 82: 1184–1188.PubMedCrossRefGoogle Scholar
- O’Dowd, B. F., Klavins, M. H., Willard, H. F., Gravel, R., Lowden, J. A., and Mahuran, D. J., 1986, Molecular heterogeneity in the infantile and juvenile forms of Sandhoff disease (O-variant GM2 gangliosidosis), J. Biol. Chem. 261: 12680–12685.PubMedGoogle Scholar
- Olmo, K., and Suzuki, K., 1988, Mutation in GM2-gangliosidosis B1 variant, J. Neurochem. 50:316–318. Okada, S., and O’Brien, J. S., 1968, Generalized gangliosidosis (ß-galactosidase deficiency), Science 160: 1002–1004.Google Scholar
- Okada, S., and O’Brien, J. S., 1969, Tay–Sachs disease: Generalized absence of a 13-D-acetylhexosaminidase component, Science 165: 698–700.PubMedCrossRefGoogle Scholar
- Palmeri, S., Hoogeveen, A. T., Verheijen, F. W., and Galjaard, H., 1986, Galactosidosis: Molecular heterogeneity among distinct clinical phenotypes, Am. J. Hum. Genet. 38: 137–148.PubMedGoogle Scholar
- Palo, J., Riekkinen, P., Arstila, A, Y., Autio, S., and Kivimaki, T., 1972, Aspartylglucosaminuria II: biochemical studies on brain, liver, kidney, and spleen, Acta Neuropathol. 20: 217–224.Google Scholar
- Palo, J., Pollitt, R. J., Pretty, K. M., and Savolainen, H., 1973, Glycoasparagine metabolites in patients with aspartylglycosaminuria: Comparison between English and Finnish patients with special reference to storage materials, Clin. Chim. Acta 47: 69–74.PubMedCrossRefGoogle Scholar
- Palo, J., Rauvala, H., Finne, J., Haltia, M., and Palmgren, K., 1985, Hyperexcretion of free N-acetylneuraminic acid—A novel type of sialuria, Clin. Chim. Acta 145: 237–242.PubMedCrossRefGoogle Scholar
- Paschke, E., Trinkl, G., Erwa, W., Pavelka, M., Mutz, I., and Roscher, A., 1986, Infantile type of sialic acid storage disease with sialuria, Clin. Genet. 29: 417–424.PubMedCrossRefGoogle Scholar
- Pentchev, P. G., Comly, M. E., Kruth, M. S., Tokoro, T., Butler, J., Sokol, J., Filling-Katz, M., Quirk, J. H., Marshall, D. C., Patel, S., Vanier, M. T., and Brady, R. O., 1987, Group C Niemann-Pick disease, FASEB J. 1: 40–45.PubMedGoogle Scholar
- Pullarkat, R. K., 1987, Dolichols and phosphodolichols in aging and in neurological disorders, Chem. Scr. 27: 85–88.Google Scholar
- Purpura, D., and Suzuki, K., 1976, Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease, Brain Res. 116: 1–12.PubMedCrossRefGoogle Scholar
- Reitman, M. L., Varki, A. P., and Kornfeld, S., 1981, Lysosomal enzyme targetting, J. Clin. Invest. 67: 1574–1579.PubMedCrossRefGoogle Scholar
- Renlund, M., 1984, Clinical and laboratory diagnosis of Salla disease in infancy and childhood, J. Pediatr. 104: 232–236.PubMedCrossRefGoogle Scholar
- Renlund, M., Chester, M. A., Lundblad, A., Aula, P., Raivio, K. O., Autio, S., and Koskela, S.-L., 1979, Increased urinary excretion of free N-acetylneuraminic acid in thirteen patients with Salla disease, Eur. J. Biochem. 101: 245–250.PubMedCrossRefGoogle Scholar
- Renlund, M., Chester, M. A., Lundblad, A., Parkkinen, J., and Krusius, T., 1983a, Free N-acetylneuraminic acid in tissues in Salla disease and the enzymes involved in its metabolism, Eur. J. Biochem. 130: 39–45.PubMedCrossRefGoogle Scholar
- Renlund, M., Aula, P., Raivio, K. O., Autio, S., Sainio, K., Rapola, J., and Koskela, S. I., 1983b, Salla disease: A new lysosomal storage disorder with distributed sialic acid metabolism, Neurology 33: 5766.CrossRefGoogle Scholar
- Renlund, M., Kovanen, P. T., Raivio, K. O., Aula, P., Gahmberg, C. G., and Ehnholm, C., 1986a, Studies on the defect underlying the lysosomal storage of sialic acid in Salla disease, J. Clin. Invest. 77: 568–574.PubMedCrossRefGoogle Scholar
- Renlund, M., Tietze, F., and Gahl, W. A., 1986b, Defective sialic acid egress from isolated fibroblast lysosomes of patients with Salla disease, Science 232: 759–762.PubMedCrossRefGoogle Scholar
- Roubicek, M., Gehler, J., and Spranger, J., 1985, The clinical spectrum of alpha-iduronidase deficiency, Am. J. Med. Genet. 20: 471–481.PubMedCrossRefGoogle Scholar
- Rushton, A. R., and Dawson, G., 1977, The effect of glycosatninoglycans on the in vivo activity of human skin fibroblast glycosphingolipid ß-galactosidases and neuraminidases, Clin. Chim. Acta 80: 133–139.PubMedCrossRefGoogle Scholar
- Sandhoff, K., Harzer, K., Wassle, W., and Jatzkewitz, H., 1971, Enzyme alterations and lipid storage in three variants of Tay—Sachs disease, J. Neurochem. 18: 2469–2489.PubMedCrossRefGoogle Scholar
- Sando, G. N., Titus-Dillon, P., Hall, C. W., and Neufeld, E. F., 1979, Inhibition of receptor-mediated uptake of a lysosomal enzyme into fibroblasts by chloroquine, procaine and ammonia, Exp. Cell Res. 119: 359–364.PubMedCrossRefGoogle Scholar
- Scaravilli, F., and Suzuki, K., 1983, Enzyme replacement in grafted nerve of twitcher mouse, Nature 305: 713–715.PubMedCrossRefGoogle Scholar
- Schwarting, G. A., Williams, M. A., Evans, J. E., and McCluer, R. H., 1988, Characterization of SSEA-1 glycolipids in human fucosidosis brain, Trans. Am. Soc. Neurochem. 19: 349.Google Scholar
- Shinoda, H., Kobayashi, T., Katayama, M., Goto, I., and Nagara, H., 1987, Accumulation of galactosylsphingosine (psychosine) in the twitcher mouse: Determination by HPLC, J. Neurochem. 49: 9299.CrossRefGoogle Scholar
- Sjoberg, I., Fransson, L.-A., Matalon, R., and Dorfman, A., 1973, Hunter’s syndrome: A deficiency of Liduronosulfate sulfatase, Biochem. Biophys. Res. Commun. 54: 1125–1132.PubMedCrossRefGoogle Scholar
- Sly, W. S., Quinton, B. A., McAllister, W. H., and Rimoin, D. L., 1973, ß-Glucuronidase deficiency: Report of clinical, radiological and biochemical features of a new mucopolysaccharidosis, J. Pediatr. 82: 249–257.PubMedCrossRefGoogle Scholar
- Sorge, J., Kuhl, W., West, C., and Beutler, E., 1987, Complete correction of the enzymatic defect of type 1 Gaucher disease fibroblasts by retroviral-mediated gene transfer, Proc. Natl. Acad. Sci. USA 84: 906–909.PubMedCrossRefGoogle Scholar
- Spranger, J., 1987, Inborn errors of complex carbohydrates metabolism, Am. J. Med. Genet. 28: 489–499.PubMedCrossRefGoogle Scholar
- Stevenson, R. E., Lubinsky, M., Taylor, H. A., Wenger, D. A., Schroer, R. J., and Olmstead, P. M., 1983, Sialic acid storage disease with sialuria: Clinical and biochemical features in the severe infantile type, Pediatrics 72: 441–449.PubMedGoogle Scholar
- Strecker, G., Peers, M.-C., Michalski, J.-C., Hondi-Assah, T., Foumet, B., Spik, G., Montreuil, J., Farriaux, J.-P., Maroteaux, P., and Durand, P., 1977a, Structure of nine sialyl-oligosaccharides accumulated in urine of eleven patients with three different types of sialidosis, Eur. J. Biochem. 75: 391–403.PubMedCrossRefGoogle Scholar
- Strecker, G., Michalski, J. C., Herlant-Peers, M. C., Foumet, B., and Montreuil, J., 1977b, Structure of 40 oligosaccharides and glycopeptides accumulating in the urine from patients with catabolism defect of glycoconjugates (sialidosis, fucosidosis, mannosidosis and Sandhoffs disease), Proc. 4th Intl. Symp. Glycoconjugates, Woods Hole, Mass.Google Scholar
- Sugahara, K., Funakoshi, S., Funakoshi, I., Aula, P., and Yamashina, I., 1976, Characterization of one neutral and two acidic glycoasparagines isolated from the urine of patients with aspartylglucosaminuria (AGU), J. Biochem. 80: 195–201.PubMedGoogle Scholar
- Suzuki, Y., and Suzuki, K., 1970, Krabbe’s globoid cell leukodystrophy: Deficiency of galactocerebrosidase in serum leukocytes and fibroblasts, Science 171: 73–75.CrossRefGoogle Scholar
- Suzuki, Y., Sakubara, H., and Yamanaka, T., 1984, Galactosialidosis: A comparative study of clinical and biochemical data on 22 patients, in: The Developing Brain and Its Disorders (M. Arima, ed.), pp. 173–188, Tokyo University Press, Tokyo.Google Scholar
- Svennerholm, L., Vanier, M.-T., and Mansson, J. E., 1980, Krabbe disease: A galactosyisphingosine (psychosine) lipidosis, J. Lipid Res. 21: 53–64.PubMedGoogle Scholar
- Sweeley, C. C., and Klionsky, B., 1963, Fabry’s disease: Classification as a sphingolipidosis and partial characterization of a novel glycolipid, J. Biol. Chem. 238: 3148–3150.PubMedGoogle Scholar
- Sweeley, C. C., and Usuki, S., 1987, The effect of a sialidase inhibitor on the cell cycle of cultured human fibroblasts, J. Cell Biol. 105: 101a.Google Scholar
- Thomas, G. H., Reynolds, L. W., and Miller, C. S., 1985, Overproduction of Nacetylneuraminic acid (sialic acid) by sialuria fibroblasts, Pediatr. Res. 19: 451–455.PubMedCrossRefGoogle Scholar
- Thompson, J. N., Roden, L., and Reynertson, R., 1986, Oligosaccharide substrates for heparin sulfamidase, Anal. Biochem. 152: 412–422.PubMedCrossRefGoogle Scholar
- Tondeur, M., Libert, J., Vamos, E., Van Hoff, F., Thomas, G. H., and Strecker, G., 1982, Infantile forms of sialic acid storage disorder, Eur. J. Pediatr. 139: 142–147.PubMedCrossRefGoogle Scholar
- Tsay, G. C., and Dawson, G., 1976, Oligosaccharide storage in brains from patients with fucosidosis, GMtgangliosidosis and GM2-gangliosidosis (Sandhoffs disease), J. Neurochem. 27: 733–740.PubMedCrossRefGoogle Scholar
- Tsay, G. C.; Dawson, G., and Li, Y.-T., 1975, Structure of the glycopeptide storage material in GMlgangliosidosis: Sequence determination with specific endo and exoglycosidases, Biochim. Biophys. Acta 385: 305–311.PubMedCrossRefGoogle Scholar
- Tsay, G. C., Dawson, G., and Sung, J. S.-S., 1976, Structure of the accumulating oligosaccharide in fucosidosis, J. Biol. Chem. 251: 5852–5859.PubMedGoogle Scholar
- Tsuji, S., Choudary, P. V., Martin, B. H., Stubblefield, B. K., Mayor, J. A., Barranger, J. A., and Ginns, E. I., 1986, A mutation in the human glucocerebrosidase gene in neuronopathic Gaucher’s disease, N. Engl. J. Med. 316: 510–575.Google Scholar
- van Diggelen, O. P., Galjaard, H., Egge, H., Dabrowski, U., and Cantz, M., 1987, Lysosomal a-Nacetylgalactosantinidase deficiency: A new inherited metabolic disease, Lancet 2: 804.PubMedCrossRefGoogle Scholar
- van Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J., and Dratz, E. A., 1987, A new role for phospholipase A2: Protection of membranes from lipid peroxidation damage, Trends Biochem. Sci. 12: 31–34.CrossRefGoogle Scholar
- Verheijen, F. W., Palmeri, S., and Galjaard, H., 1987, Purification and partial characterization of lysosomal neuraminidase from human placenta, Eur. J. Biochem. 162: 63–67.PubMedCrossRefGoogle Scholar
- Vestermark, S., Tonnesen, T., Schulz-Andersen, M., and Guttler, F., 1987, Neurological symptoms in a Maroteaux—Lamy patient, Clin. Genet. 31: 114–117.PubMedCrossRefGoogle Scholar
- von Figura, K., and Hasilik, A., 1986, Lysosomal enzymes and their receptors, Annu. Rev. Biochem. 55: 167–193.CrossRefGoogle Scholar
- Warner, T. G., DeKremer, R. D., Sjoberg, E. R., and Mock, A. K., 1985, Characterization and analysis of branched chain N-acetylglucosaminyl oligosaccharides accumulating in Sandhoff disease tissue: Evidence that biantennary-bisected oligosaccharides of glycoproteins are abundant substrates for lysosomes, J. Biol. Chem. 260: 6194–6199.PubMedGoogle Scholar
- Weismann, U., DiDonata, S., and Hershkowitz, N. N., 1975, Effect of chloroquine on culturd fibroblasts release of lysosomal hydrolases and inhibition of their uptake, Biochem. Biophys. Res. Commun. 66: 1338–1343.CrossRefGoogle Scholar
- Wenger, D. A., Sattler, M., Clark, C., Tanaka, H., Suzuki, K., and Dawson, G., 1975, Lactosyl ceramidosis: Normal activity for two lactosyl ceramide ß-galactosidases, Science 188: 1310–1312.PubMedCrossRefGoogle Scholar
- Wenger, D. A., Sattler, M., Mueller, T., Myers, G. G., Schneiman, R. S., and Nixon, G. W., 1980, Adult GMl gangliosidosis, Clin. Genet. 17: 323–334.PubMedCrossRefGoogle Scholar
- Wenger, D. A., Sujansky, E., Fennessey, P. V., and Thompson, J. N., 1986, Combined heparan sulfate sulfamidase and 3-mannosidase deficiency in a Sanfilippo phenotype, N. Engl. J. Med. 315: 1203–1206.CrossRefGoogle Scholar
- Wollburg-Buchholz, K., Schlote, W., Baumkotter, J., Cantz, M., Holder, H., and Harzer, K., 1985, Familial lysosomal storage disease with generalized vacuolization and sialic aciduria, Sporadic Salla disease, Neuropaediatrie 16: 67–75.CrossRefGoogle Scholar
- Wolfe, L. S., Senior, R. G., and Ng Ying Kin, N. M. K., 1974, The structure of oligosaccharides accumulating in the liver of GMl-gangIiosidosis type 1, J. Biol. Chem. 249: 1828–1838.PubMedGoogle Scholar
- Wolfe, L. S., Ivy, G. O., and Witkop, C. J., 1987, Dolichols: Lysosomal membrane turnover and relationships to the accumulation of ceroid and lipofuscin in inherited diseases, Alzheimer’s disease and aging, Chem. Scr. 27: 79–84.Google Scholar
- Ylitalo, V., Hagberg, B., Rapola, J., Mansson, J. E., Svennerholm, L., Sauner, G., and Tonnby, B., 1986, Salta disease variants, Neuropediatr. 17: 44–47.CrossRefGoogle Scholar
- Ziegler, M., and Bach, G., 1986, Internalization of exogenous gangliosides in cultured skin fibroblasts for the diagnosis of mucolipidosis IV, Clin. Chim. Acta 157: 183–190.CrossRefGoogle Scholar