Extracellular Matrix Adhesive Glycoproteins and Their Receptors in the Nervous System

  • Philippe Douville
  • Salvatore Carbonetto

Abstract

The extracellular space occupies about 40% of the immature brain (Bondareff and Pysh, 1968), decreasing to 20% in the adult (van Harreveld et al., 1971; Nevis and Collins, 1967). This space is filled with a matrix (ECM) of insoluble glycoconjugates (glycoproteins, proteoglycans) through which neural cell precursors migrate to take up their final positions in the central nervous system (CNS). In the adult peripheral nervous system, regenerating axons must also make their way through the ECM to reach their targets. In these and other instances, adhesion of cells to a matrix or other cells is essential for motility, which results in large part from contractile processes in the cell. A common feature of such adhesions is that they involve interaction of glycoconjugates in the ECM with others (glycoproteins, proteoglycans, and glycolipids) at the cell surface; for example, the adhesive ECM glycoproteins laminin, fibronectin, and collagens bind to receptors on the cell surface. The ramifications of these ECM—receptor interactions in the nervous system may be profound. In some instances they rival those of hormones and growth factors (Edgar et al., 1984) by modifying gene expression (Bissell et al., 1982) and leading to neural cell differentiation (Reh et al., 1987), proliferation (Kleinman et al.,1984), synaptogenesis (Nitkin et al.,1983), neuroblast migration (Newgreen and Thiery, 1980; Boucaut et al.,1984; Liesi, 1985a), Schwann cell ensheathment of peripheral axons (Bunge et al.,1986), and possibly formation of the blood—brain barrier (Arthur et al.,1987).

Keywords

Basement Membrane Schwann Cell Neurite Outgrowth Neural Crest Cell Globular Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achseon, A., Edgar, D., Timpl, P., and Theonen, H,. 1986, Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells, J. cell Biol. 102: 151–159.CrossRefGoogle Scholar
  2. Akers, R. M., Mosher, D. F., and Lilien, J. E., 1981, Promotion of retinal neurite outgrowth by substratum-bound fibronectin, Del,. Biol. 86:179–188.Google Scholar
  3. Akeson, R., and Warren, S. L., 1986, PC12 adhesion and neurite formation on selected substrates are inhibited by some glycosaminoglycans and a fibronectin-derived tetrapeptide, Exp. Cell Res. 162: 347–362.PubMedCrossRefGoogle Scholar
  4. Akiyama, S. K., and Yamada, K. M., 1985, The interaction of plasma fibronectin with fibroblastic cells in suspension, J. Biol. Chem. 260: 4492–4500.PubMedGoogle Scholar
  5. Akiyama, S. K., Yamada, S. S., and Yamada, K. M., 1986, Characterization of a 140-kD avian cell surface antigen as a fibronectin-binding molecule, J. Cell Biol. 102: 442–448.PubMedCrossRefGoogle Scholar
  6. Aquino, D. A., Margolis, R. U., and Margolis, R. K., 1984, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve, J. Cell Biol. 99: 1117–1119.PubMedCrossRefGoogle Scholar
  7. Arthur, F. E., Shivers, R. R., and Bowman, P. D., 1987, Astrocyte-mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model, Dey. Brain Res. 36: 155–159.CrossRefGoogle Scholar
  8. Aumailley, M., Nurcombe, V., Edgar, D., Paulsson, M., and Timpl, R., 1987, The cellular interactions of laminin fragments, J. Biol. Chem. 262: 11532–11538.PubMedGoogle Scholar
  9. Barlow, D. P., Green, N. M., Kurkinen, M., and Hogan, B., 1984, Sequencing of laminin B chain cDNA, reveals C-terminal regions of coiled-coil alpha-helix, EMBO J. 3: 2355–2362.PubMedGoogle Scholar
  10. Barsky, S. H., Rao, C. N., Hyams, D., and Liotta, L. A., 1984, Characterization of a laminin receptor from human breast carcinoma tissue, Breast Cancer Res. Treat. 4: 181–188.PubMedCrossRefGoogle Scholar
  11. Bissell, M. J., Hall, G. H., and Parry, G., 1982, How does the extracellular matrix direct gene expression? J. Theor. Biol. 99: 31–68.PubMedCrossRefGoogle Scholar
  12. Bixby, J. L., Pratt, R. S., Lilien, J ., and Reichardt, L. F., 1987, Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Cat+-dependent and -independent cell adhesion molecules, Proc. Natl. Acad. Sci. USA 84: 2555–2559.Google Scholar
  13. Bondareff, W., and Pysh, J. J., 1968, Distribution of the extracellular space during postnatal maturation of rat cerebral cortex, Anat. Rec. 160: 773–780.PubMedCrossRefGoogle Scholar
  14. Boucaut, J.-C., Darribere, T., Poole, T. J., Aoyama, H., Yamada, K. M., and Thiery, J.-P., 1984, Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos, J. Cell Biol. 99: 1822–1830.PubMedCrossRefGoogle Scholar
  15. Bozyczko, D., and Horwitz, A. F., 1986, The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension, J. Neurosci. 65: 1241–1251.Google Scholar
  16. Branner-Fraser, M., 1986, An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest cell development in vivo, Dey. Biol. 117: 528–536.CrossRefGoogle Scholar
  17. Brown, S. S., Malinoff, H. L., and Wicha, M. S., 1983, Connectin, a cell surface protein that binds both laminin and actin, Proc. Natl. Acad. Sci. USA 80: 5927–5930.PubMedCrossRefGoogle Scholar
  18. Buck, C. A., and Horwitz, A. F., 1987, Cell surface receptors for extracellular matrix molecules, Annu. Rev. Cell Biol. 3: 179–205.PubMedCrossRefGoogle Scholar
  19. Buck, C. A., Shea, E., Duggan, K., and Horwitz, A. F., 1986, Integrin (the CSAT antigen) functionality requires oligomeric integrity, J. Cell Biol. 103: 2421–2428.PubMedCrossRefGoogle Scholar
  20. Bunge, R. P., Bunge, M. B., and Eldridge, C. F., 1986, Linkage between axonal ensheathment and basal lamina production by Schwann cells, Annu. Rev. Neurosci. 9: 305–328.PubMedCrossRefGoogle Scholar
  21. Burridge, K., 1987, Substrate adhesions in normal and transformed fibroblasts: Organization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts, Cancer Rev. 4: 18–78.Google Scholar
  22. Carbonetto, S., 1984, The extracellular matrix of the nervous system, Trends Neurosci. 7: 382–387.CrossRefGoogle Scholar
  23. Carbonetto, S. T., Gruver, M. M., and Turner, D. C., 1982, Nerve fiber growth on defined hydrogel substrates, Science 216: 897–899.PubMedCrossRefGoogle Scholar
  24. Carbonetto, S., Gruver, M. M., and Turner, D. C., 1983, Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates, J. Neurosci. 3: 2324–2335.PubMedGoogle Scholar
  25. Carbonetto, S., Evans, D., and Cochard, P., 1987, Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems, J. Neurosci. 7: 610–620.PubMedGoogle Scholar
  26. Carlin, B., Jaffe, R., Bender, B., and Chung, A. E., 1981, Entactin, a novel basal lamina-associated sulfated glycoprotein, J. Biol. Chem. 256: 5209–5214.PubMedGoogle Scholar
  27. Chen, W.-T., Hasegawa, E., Hasegawa, T., Weinstock, C., and Yamada, K. M., 1985, Development of cell surface linkage complexes in cultured fibroblasts, J. Cell Biol. 100: 1103–1114.PubMedCrossRefGoogle Scholar
  28. Cheresh, D. A., and Harper, J. R., 1987, Arg-Gly-Asp recognition by a cell adhesion receptor requires its 130-kDa a subunit, J. Biol. Chem. 262: 1434–1437.PubMedGoogle Scholar
  29. Cheresh, D. A., Pierschbacher, M. D., Herzig, M. A., and Mujoo, K., 1986, Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins, J. Cell Biol. 102: 688–696.PubMedCrossRefGoogle Scholar
  30. Chiquet-Ehrismann, R., Mackie, E. J., Pearson, C. A., and Sakakura, T., 1986, Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis, Cell 47:131-139.Google Scholar
  31. Chiquet, M., 1989, Tenascin/J1/Cytotactin: The potential function of hexabrachion protein in neural development, Dev. Neurosci. 11:in press.Google Scholar
  32. Chiu, A. Y., and Sanes, J. R., 1984, Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle, Dev. Biol. 103: 456–467.PubMedCrossRefGoogle Scholar
  33. Chung, A. E., Jaffe, R., Freeman, I. L., Vergnes, J. P., Braginski, J. E., and Carlin, B., 1979, Properties of a basement membrane related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line, Cell 16: 277–287.PubMedCrossRefGoogle Scholar
  34. Chuong, C.-M., Crossin, K. L., and Edelman, G. M., 1987, Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers, J. Cell Biol. 104: 331–342.PubMedCrossRefGoogle Scholar
  35. Clegg, D. O., Helder, J. C., Hann, B. C., Hall, D. E., and Reichardt, L. F., 1988, Amino acid sequence and distribution of mRNA encoding a major skeletal muscle laminin binding protein: an extracellular matrix-associated protein with an unusual COOH-terminal polyaspartate domain, J. Cell Biol. 107: 699–705.PubMedCrossRefGoogle Scholar
  36. Cohen, J., Bume, J. F., Winter, J., and Bartlett, P., 1986, Retinal ganglion cells lose response to laminin with maturation, Nature 322: 465–467.PubMedCrossRefGoogle Scholar
  37. Cohen, J., Bume, J. F., McKinlay, C., and Winter, J., 1987, The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons, Dev. Biol. 122: 407–418.PubMedCrossRefGoogle Scholar
  38. Cole, G. C., and Glaser, L., 1986, A heparin-binding domain from N-CAM is involved in neuron—substratum adhesion, J. Cell Biol. 102: 403–412.PubMedCrossRefGoogle Scholar
  39. Crossin, K. L., Hoffman, S., Grumet, M., Thiery, J.-P., and Edelman, G. M., 1986, Site-restricted expression of cytotactin during development of the chicken embryo, J. Cell Biol. 102: 1917–1930.PubMedCrossRefGoogle Scholar
  40. Damsky, C. H., Knudsen, K. A., Bradley, D., Buck, C. A., and Horwitz, A. F., 1985, Distribution of the cell substratum (CSAT) antigen on myogenic and fibroblastic cells in culture, J. Cell Biol. 100:1528-1539.Google Scholar
  41. Davis, G. E., Manthorpe, M., Engvall, E., and Varon, S., 1985a, Isolation and characterization of rat Schwannoma neurite-promoting factor: Evidence that the factor contains laminin, J. Neurosci. 5: 2662–2671.PubMedGoogle Scholar
  42. Davis, G. E., Varon, S., Engvall, E., and Manthorpe, M., 1985b, Substratum-binding neurite-promoting factors: Relationships to laminin, Trends Neurosci. 8: 528–532.CrossRefGoogle Scholar
  43. Dedhar, S., Ruoslahti, E., and Pierschbacher, M. D., 1987, A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence, J. Cell Biol. 104: 585–593.PubMedCrossRefGoogle Scholar
  44. Douville, P., Harvey, W., and Carbonetto, S., 1987, Identification and purification of a high affinity laminin receptor from embryonic chick brain: Evidence for developmental regulation in the CNS, Soc. Neurosci. Abstr. 13: 14–82.Google Scholar
  45. Douville, P. J., Harvey, W. J., and Carbonetto, S., 1988, Isolation and characterization of high affinity laminin receptors in neural cells, J. Biol. Chem. 263: 14964–14969.PubMedGoogle Scholar
  46. Dow, K. E., Musky, S. E. L., Roder, J. C., Riopelle, R. G., 1988, Neuronal proteoglycans: Biosynthesis and functional interaction with neurons in vitro, J. Neurosci. 8: 3278–3289.PubMedGoogle Scholar
  47. Dräger, U. C., and Rabacchi, S. A., 1988, A positional marker in the dorsal eye of the embryo, Soc. Neurosci. Abs. 14: 769.Google Scholar
  48. Duband, J.-L., Rocher, S., Chen, W.-T., Yamada, K. M., and Thiery, J.-P., 1986, Cell adhesion and migration in the early vertebrate embryo: Location and possible role of the putative fibronectin receptor complex, J. Cell Biol. 102: 160–178.PubMedCrossRefGoogle Scholar
  49. Dziadek, M., and Timpl, R., 1985, Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells, Dey. Biol. 111: 372–382.CrossRefGoogle Scholar
  50. Dziadek, M., Paulsson, M., and Timpl, R., 1985, Identification and interaction repertoire of large forms of the basement membrane protein nidogen, EMBO J. 4: 2513–2518.PubMedGoogle Scholar
  51. Edgar, D., Timpl, R., and Theonen, H., 1984, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, EMBO J. 3: 1463–1468.PubMedGoogle Scholar
  52. Ehrismann, R., Roth, D. E., Eppenberger, H. M., and Turner, D. C., 1982, Arrangement of attachment-promoting, self-association, and heparin-binding sites in horse serum fibronectin, J. Biol. Chem. 257: 7381–7387.PubMedGoogle Scholar
  53. Enenstein, J., and Furcht, L. T., 1984, Isolation and characterization of epinectin, a novel adhesion protein for epithelial cells, J. Cell Biol. 99: 464–470.PubMedCrossRefGoogle Scholar
  54. Engel, J., Odermatt, E., Engle, A., Madri, J. A., Furthmayr, H., Rohde, H., and Timpl, R., 1981, Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix, J. Mol. Biol. 150: 97–120.PubMedCrossRefGoogle Scholar
  55. Engvall, E., Davis, G. E., Dickerson, K., Ruoslahti, E., Varon, S., and Manthorpe, M., 1986, Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site, J. Cell Biol. 103: 2457–2465.PubMedCrossRefGoogle Scholar
  56. Erickson, H. P., and Inglesias, J. L., 1984, A six-armed oligomer isolated from cell surface fibronectin preparations, Nature 311: 267–269.PubMedCrossRefGoogle Scholar
  57. Fahrig, T., Landa, C., Pesheva, P., Kühn, K., and Schachner, M., 1987, Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents, EMBO J. 6: 2875–2883.PubMedGoogle Scholar
  58. Fakuda, T., and Hashimoto, P. H., 1987, Distribution and fine structure of ependymal cells possessing intracellular cysts in the aqueductal wall of the rat brain, Cell Tissue Res. 247: 555–564.CrossRefGoogle Scholar
  59. Fitzgerald, L. A., Steiner, B., Rall, S. C., Jr., Lo, S., and Phillips, D. R., 1987, Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone, J. Biol. Chem. 262: 3936–3939.PubMedGoogle Scholar
  60. Gardner, J. M., and Hynes, R. O., 1985, Interaction of fibronectin with its receptor on platelets, Cell 42: 439–448.PubMedCrossRefGoogle Scholar
  61. Giftochristos, N., and David, S., 1988, Laminin and heparan sulfate proteoglycan in the lesioned adult mammaliam central nervous system and their possible relationship to axonal sprouting, J. Neurocyt. 17: 385–397.CrossRefGoogle Scholar
  62. Ginsberg, M., Pierschbacher, M. D., Ruoslahti, E., Marguerie, G., and Plow, E., 1985, Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion, J. Biol. Chem. 260: 3931–3936.PubMedGoogle Scholar
  63. Ginsberg, M. H., Loftus, J., Ryckwaert, J., Pierschbacher, M., Pytela, R., Ruoslahti, E., and Plow, E. F., 1987, Immunochemical and amino-terminal sequence comparison of two cytoadhesins indicates they contain similar or identical ß subunits and distinct a subunits, J. Biol. Chem. 262: 5437–5440.PubMedGoogle Scholar
  64. Goodman, S. L., Deutzmann, R., and von der Mark, K., 1987, Two distinct cell-binding domains can independently promote nonneuronal cell adhesion and spreading, J. Cell Biol. 105: 589–598.PubMedCrossRefGoogle Scholar
  65. Graf, J., Iwamoto, Y., Sasaki, M., Martin, G. R., Kleinman, H. K., Robey, F. A., and Yamada, Y., 1987a, Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding, Cell 48: 989–996.PubMedCrossRefGoogle Scholar
  66. Graf, J., Ogle, R. C., Robey, F. A., Sasaki, M., Martin, G. R., Yamada, Y., and Kleinman, H. K., 1987b, A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor, Biochemistry 26: 6896–6900.PubMedCrossRefGoogle Scholar
  67. Greve, J. M., and Gottlieb, D. I., 1982, Monoclonal antibodies which alter the morphology of cultured chick myogenic cells, J. Cell Biochem. 18: 221–229.PubMedCrossRefGoogle Scholar
  68. Grinnell, F., 1978, Cellular adhesiveness and extracellular substrata, Int. Rev. Cytol. 53: 65–144.PubMedCrossRefGoogle Scholar
  69. Grumet, M., Hoffman, S., Crossin, K. L., and Edelman, G. M., 1985, Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction, Proc. Natl. Acad. Sci.USA 82: 8075–8079.PubMedCrossRefGoogle Scholar
  70. Hall, D. E., Neugebauer, K. M., and Reichardt, L. F., 1987, Embryonic neural retinal cell response to extracellular matrix proteins: Developmental changes and effects of the cell substratum attachment antibody (CSAT), J. Cell Biol. 104: 623–634.PubMedCrossRefGoogle Scholar
  71. Hall, D. E., Frazer, K. A., Hann, B. C., and Reichardt, L. F., 1988, Isolation and characterization of a laminin-binding protein from rat and chick muscle, J. Cell Biol. 107: 687–697.PubMedCrossRefGoogle Scholar
  72. Harvey, W., and Carbonetto, S., 1986, Specific binding of 125í-laminin to neural cells in culture, Soc. Neurosci. Abstr. 12: 1109.Google Scholar
  73. Hatten, M. E., Furie, M. B., and Rifkin, D. B., 1982, Binding of developing mouse cerebellar cells to fibronectin: A possible mechanism for the formation of the external granular layer, J. Neurosci. 2: 1195–1206.PubMedGoogle Scholar
  74. Hauschka, S. D., and Konigsberg, I. R., 1966, The influence of collagen on the development of muscle clones, Proc. Natl. Acad. Sci. USA 55: 119–126.PubMedCrossRefGoogle Scholar
  75. Hemler, M. E., Huang, C., and Schwarz, L., 1987, The VLA protein family: Characterization of five distinct cell surface heterodimers each with a common 130,000 MT subunit, J. Biol. Chem. 262: 3300–3309.PubMedGoogle Scholar
  76. Hewitt, A. T., Kleinman, H. K., Pennypacker, J. P., and Martin, G. R., 1980, Identification of an adhesion factor for chondrocytes, Proc. Natl. Acad. Sci. USA 77: 385–388.PubMedCrossRefGoogle Scholar
  77. Hinek, A., Wrenn, D. S., Mecham, R. P., and Barondes, S. H., 1988, The elastin receptor: a galactosidebinding protein, Science 239: 1539–1541.PubMedCrossRefGoogle Scholar
  78. Hirst, R., Horwitz, A., Buck, C., and Rohrschneider, L., 1986, Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases, Proc. Natl. Acad. Sci. USA 83: 6470–6474.PubMedCrossRefGoogle Scholar
  79. Hopkins, J. M., Ford-Holevinski, T. S., McCoy, J. P., and Agranoff, B. W., 1985, Laminin and optic nerve regeneration in the goldfish, J. Neurosci. 5:3030–3038.Google Scholar
  80. Horwitz, A., Duggan, K., Greggs, R., Decker, C., and Buck, C., 1985, The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin, J. Cell Biol. 101: 2134–2144.PubMedCrossRefGoogle Scholar
  81. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K., 1986, Interaction of plasma membrane fibronectin receptor with talin—A transmembrane linkage, Nature 320: 531–533.PubMedCrossRefGoogle Scholar
  82. Hostikka, S. L., Kurkinen, M., and Trygvason, K., 1987, Nucleotide sequence coding for the human type IV collagen a2 chain cDNA reveals extensive homology with the NC-1 domain of al(IV) but not with the collagenous domain or 3’-untranslated region, FEBS Lett. 216: 281–286.PubMedCrossRefGoogle Scholar
  83. Huard, T. M., Malinoff, H. L., and Wicha, M. S., 1986, Macrophages express a plasma membrane receptor for basement membrane laminin, Am. J. Pathol. 123: 365–370.PubMedGoogle Scholar
  84. Humphries, M. J., Olden, K., and Yamada, K. M., 1986a, A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells, Science 233: 467–470.PubMedCrossRefGoogle Scholar
  85. Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K., and Yamada, K. M., 1986b, Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion, J. Cell Biol. 103: 2637–2647.PubMedCrossRefGoogle Scholar
  86. Hynes, R. O., 1985, Molecular biology of fibronectin, Annu. Rev. Cell Biol. 1: 67–90.PubMedCrossRefGoogle Scholar
  87. Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48: 549–554.PubMedCrossRefGoogle Scholar
  88. Hynes, R. O., Patel, R., and Miller, R. H., 1986, Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development, J. Neurosci. 6: 867–876.PubMedGoogle Scholar
  89. Ide, C., Tohyama, K., Yokota, R., Nitatori, T., and Onodera, S., 1983, Schwann cell basal lamina and nerve regeneration, Brain Res. 288: 61–75.PubMedCrossRefGoogle Scholar
  90. Iwamoto, Y., Robey, F. A., Graf, J., Sasaki, M., Kleinman, H. K., Yamada, Y., and Martin, G., 1987, YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation, Science 238: 1132–1134.PubMedCrossRefGoogle Scholar
  91. Keene, D. R., Sakai, L. Y., Lunstrum, G. P., Moms, N. P., and Burgeson, R. E., 1987, Type VII collagen forms an extended network of anchoring fibrils, J. Cell Biol. 104: 611–621.PubMedCrossRefGoogle Scholar
  92. Kefalides, N. A., Alper, R., and Clark, C. C., 1979, Biochemistry and metabolism of basement membranes, Int. Rev. Cytol. 61: 167–221.PubMedCrossRefGoogle Scholar
  93. Kleinman, H. K., McGarvey, M. L., Hassell, J. R., Martin, G. R., Baron van Evercooren, A., and DuboisDalcq, M., 1984, The role of laminin in basement membranes and in the growth, adhesion, and differentiation of cells, in: The Role of Extracellular Matrix in Development ( R. L. Trelstad, ed.), pp. 123–143, Liss, New York.Google Scholar
  94. Kleinman, H. K., Ogle, R. C., Cannon, F. B., Little, C. C., Sweeney, T. M., and Luckenbill-Edds, L., 1988, Laminin receptors for neurite formation, Proc. Natl. Acad. Sci. USA 85: 1282–1286.PubMedCrossRefGoogle Scholar
  95. Kleitman, N., Wood, P., Johnson, M. I., and Bunge, R. P., 1988, Schwann cell surfaces but not extracellular matrix organized by Schwann cells support neurite outgrowth from embryonic rat retina, J. Neurosci. 8: 653–663.PubMedGoogle Scholar
  96. Knudsen, K. A., Horwitz, A. F., and Buck, C. A., 1985, A monoclonal antibody identifies a glycoprotein complex involved in cell–substratum adhesion, Exp. Cell Res. 157: 218–226.PubMedCrossRefGoogle Scholar
  97. Komblihtt, A. R., Umezawa, K., Vibe-Pedersen, K., and Baralle, F. E., 1985, Primary structure of human fibronectin: Differential splicing may generate at least 10 polypeptides from a single gene, EMBO J. 4: 1755–1759.Google Scholar
  98. Kruse, J., Keilhauer, G., Faissner, A., Timpl, R., and Schachner, M., 1985, The J1 glycoprotein—A novel nervous system cell adhesion molecule of the L2/HNK-1 family, Nature 316: 146–148.PubMedCrossRefGoogle Scholar
  99. Kühn, K., Glanville, R. W., Babel, W., Qian, R.-Q., Dieringer, H., Voss, T., Siebold, B., Oberbäumer, J., Schwarz, U., and Yamada, Y., 1985, The structure of type IV collagen, Ann. N.Y. Acad. Sci. 460: 14–24.PubMedCrossRefGoogle Scholar
  100. Lander, A. D., Fujii, D. K., and Reichardt, L. F., 1985, Laminin is associated with the “neurite outgrowth promoting factors” found in conditioned media, Proc. Natl. Acad. Sci. USA 82: 2183–2187.PubMedCrossRefGoogle Scholar
  101. Landis, S. C., 1983, Neuronal growth cones, Annu. Rev. Physiol. 45: 567–580.PubMedCrossRefGoogle Scholar
  102. Laurie, G. W., Leblond, C. P., and Martin, G. R., 1982, Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes, J. Cell Biol. 95: 340–344.PubMedCrossRefGoogle Scholar
  103. Laurie, G. W., Leblond, C. P., and Martin, G. R., 1983, Light microscopic immunolocalization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in basement membranes of a variety of rat organs, Am. J. Anat. 167: 71–82.PubMedCrossRefGoogle Scholar
  104. Law, S. K. A., Gagnon, J., Hildreth, J. E. K., Wells, C. E., Willis, A. C., and Wong, A. J., 1987, The primary structure of the ß subunit of the cell surface adhesion glycoproteins LFA-1, CR3 and p150,95 and its relationship to the fibronectin receptor, EMBO J. 64: 915–919.Google Scholar
  105. Lesot, H., Kuhl, U., and von der Mark, K., 1983, Isolation of a laminin-binding protein from muscle cell membranes, EMBO J. 2: 861–865.PubMedGoogle Scholar
  106. Letoumeau, P. C., 1981, Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell–substratum adhesions, Dev. Biol. 85: 113–122.CrossRefGoogle Scholar
  107. Letourneau, P. C., 1983, Axonal growth and guidance, Trends Neurosci. 6: 451–455.CrossRefGoogle Scholar
  108. Letourneau, P. C., 1988, Interaction of growing axons with fibronectin and laminin, in: The Current Status of Peripheral Nerve Regeneration ( V. Chan-Palay and S. L. Palay, eds.), pp. 99–110, Liss, New York.Google Scholar
  109. Liesi, P., 1985a, Do neurons in the vertebrate CNS migrate on laminin? EMBO J. 4: 1163–1170.PubMedGoogle Scholar
  110. Liesi, P., 1985b, Laminin-inmwnoreactive glia distinguish adult CNS systems from non-regenerative ones, EMBO J. 4: 2505–2511.PubMedGoogle Scholar
  111. Linsenmayer, T. F., 1981, Collagen, in: Cell Biology of Extracellular Matrix ( E. Hay, ed.), pp. 5–37, Plenum Press, New York.CrossRefGoogle Scholar
  112. Liotta, L. A., Hand, P. H., Rao, C. N., Bryant, G., Barsky, S. H., and Schlom, J., 1985, Monoclonal antibodies to the human laminin receptor recognize structurally distinct sites, Exp. Cell Res. 156: 117–126.PubMedCrossRefGoogle Scholar
  113. Liotta, L. A., Rao, C. N., and Wewer, U. M., 1986, Biochemical interactions of tumor cells with the basement membrane, Annu. Rev. Biochem. 55: 1037–1057.PubMedCrossRefGoogle Scholar
  114. Low, F. N., 1976, The perineurium and connective tissue of peripheral nerve, in: The Peripheral Nerve (D. N. Landon, ed.), pp. 159–187, Chapman & Hall, London.Google Scholar
  115. Luckenbill-Edds, L., Ogle, R. C., and Kleinman, H. K., 1986, Laminin binds to cell membrane receptors on a neuroblastoma x glioma cell line (NG108–15), J. Cell Biol. 103: 261a.Google Scholar
  116. Madri, J. A., Pratt, B. M., Yurchenko, P. D., and Furthmayr, H., 1984, The ultrastructural organization and architecture of basement membranes, in: Basement Membranes and Cell Movement, pp. 6–24, Pitman, London.Google Scholar
  117. Makgoba, M. W., Sanders, M. E., Luce, G. E. G., Dustin, M. L., Springer, T. A., Clark, E. A., Mannoni, P., and Shaw, S., 1988, ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells, Nature 331: 86–88.PubMedCrossRefGoogle Scholar
  118. Malinoff, H. L., and Wicha, M. S., 1983, Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells, J. Cell Biol. 96: 1475–1479.PubMedCrossRefGoogle Scholar
  119. Manthorpe, M., Engvall, E., Ruoslahti, E., Longo, F. M., Davis, G. E., and Varon, S., 1983, Laminin promotes neuritic regeneration from cultured peripheral and central neurons, J. Cell Biol. 97: 1882–1890.PubMedCrossRefGoogle Scholar
  120. Manthorpe, M., Hagg, T., Engvall, E., and Varon, S., 1988, Luminin-like immunoreactivity in adult rat brain neurons Soc. Neurosci. Abs. 14: 364.Google Scholar
  121. Martin, G. R., and Timpl, R., 1987, Laminin and other basement membrane components, Annu. Rev. Cell Biol. 3: 57–85.PubMedCrossRefGoogle Scholar
  122. McCarthy, J. B., Palm, S. L., and Furcht, L. T., 1984, Migration by haptotaxis of a Schwalm cell tumor line to the basement membrane glycoprotein laminin, J. Cell Biol. 97: 772–777.CrossRefGoogle Scholar
  123. Naidet, C., Séméríra, M., Yamada, K. M., and Thiery, J.-P., 1987, Peptides containing the cell-attachment recognition signal Arg-Gly-Asp prevent gastrulation in Drosophila embryos, Nature 325: 348–350.PubMedCrossRefGoogle Scholar
  124. Neff, N. T., Lowrey, C., Decker, C., Tovar, A., Damsky, C., Buck, C., and Horwitz, A. F., 1982, A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices, J. Cell Biol. 95: 654–666.PubMedCrossRefGoogle Scholar
  125. Nevis, A. H., and Collins, G. H., 1967, Electrical impedance and volume changes in brain during development, Brain Res. 5 :57–85.Google Scholar
  126. Newgreen, D., and Thiery, J.-P., 1980, Fibronectin in early avian embryos: Synthesis and distribution along the migration pathways of neural crest cells, Cell Tissue Res. 211: 269–291.PubMedCrossRefGoogle Scholar
  127. Nitkin, R. M., Wallace, B. G., Spira, M. E., Godfrey, E. W., and McMahon, U. J., 1983, Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions, Cold Spring Harbor Symp. Quant. Biol. 48: 653–665.PubMedCrossRefGoogle Scholar
  128. Oberbäumer, I., Laurent, M., Schwarz, U., Sakurai, Y., Yamada, Y., Vogeli, G., Voss, T., Siebold, B., Glanville, R. W., and Kühn, K., 1985, Amino acid sequence of the non-collagenous globular domain (NCI) of the a1(IV) chain of basement membrane collagen derived from complementary DNA, Eur. J. Biochem. 14: 217–224.CrossRefGoogle Scholar
  129. Odermatt, E., Tamkun, J. W., and Hynes, R. 0., 1985, Repeating modular structure of the fibronectin gene: Relationship to protein structure and subunit variation, Proc. Natl. Acad. Sci. USA 82: 6571–6575.PubMedCrossRefGoogle Scholar
  130. Ogle, R. C., and Little, C. D., 1989, Collagen binding proteins derived from the embryonic fibroblast cell surface recognize arginine-glycine-aspartic acid, Biosci. Rep., in press.Google Scholar
  131. Ogle, R. C., Laurie, G. W., Kitten, G. T., Kandel, S. L., and Bing, J. T., 1987, Isolation of a cell surface receptor for collagen type IV, J. Cell Biol. 105: 136a.Google Scholar
  132. Oldberg, A., and Ruoslahti, E., 1986, Evolution of the fibronectin gene, J. Biol. Chem. 261: 2113–2116.PubMedGoogle Scholar
  133. Ott, U., Odermatt, E., Engel, J., Furthmayr, H., and Timpl, R., 1982, Protease resistance and conformation of laminin, Eur. J. Biochem. 123: 63–72.PubMedCrossRefGoogle Scholar
  134. Palm, S. L., and Furcht, L. T., 1983, Production of laminin and fibronectin by Schwannoma cells: Cell—protein interactions in vitro and protein localization in peripheral nerve in vivo, J. Cell Biol. 96:1218-1226.Google Scholar
  135. Patel, V. P., and Lodish, H. F., 1986, The fibronectin receptor on mammalian erythroid precursor cells: Characterization and developmental regulation, J. Cell Biol. 86: 449–456.CrossRefGoogle Scholar
  136. Patterson, P. H., 1985, On the role of proteases, their inhibitors and the extracellular matrix in promoting neurite outgrowth, J. Physiol. (Paris) 80: 207–211.Google Scholar
  137. Paulsson, M., Aumailley, M., Deutzmann, R., Timpl, R., Beck, K., and Engel, J., 1987, Lamininnidogen complex: Extraction with chelating agents and structural characterization, Eur. J. Biochem. 166: 11–19.PubMedCrossRefGoogle Scholar
  138. Peters, A., Palay, S. L., and Webster, H., 1976, The Fine Structure of the Nervous System: The Neurons and Supporting Cells, Saunders, Philadelphia.Google Scholar
  139. Petersen, T. E., Thogersen, H. C., Skorstengaard, K., Vibe-Pedersen, K., Sahl, P., Sottrup-Jensen, L., and Magnusson, S., 1983, Partial primary structure of bovine plasma fibronectin: Three types of internal homology, Proc. Natl. Acad. Sci. USA 80: 137–141.PubMedCrossRefGoogle Scholar
  140. Pierschbacher, M. D., and Ruoslahti, E., 1984, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309: 30–33.PubMedCrossRefGoogle Scholar
  141. Pierschbacher, M. D., Hayman, E. G., and Ruoslahti, E., 1981, Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule, Cell 26: 259–267.PubMedCrossRefGoogle Scholar
  142. Plow, E. F., Loftus, J. C., Levin, E. G., Fair, D. S., Dixon, D., Forsyth, J., and Ginsberg, M. H., 1986, Immunologic relationship between platelet membrane glycoprotein GPIIb/IIIa and cell surface molecules expressed by a variety of cells, Proc. Natl. Acad. Sci. USA 83: 6002–6006.PubMedCrossRefGoogle Scholar
  143. Pollard, T. D., 1980, Platelet contractile proteins, Thromb. Haemostasis 42: 1634–1637.Google Scholar
  144. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985a, Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40: 191–198.PubMedCrossRefGoogle Scholar
  145. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985b, A 125/115-kDa cell surface receptor for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence from fibronectin, Proc. Natl. Acad. Sci. USA 82: 5766–5770.PubMedCrossRefGoogle Scholar
  146. Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E., 1986, Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp-specific adhesion receptors, Science 231: 1559–1562.PubMedCrossRefGoogle Scholar
  147. Rabacchi, S. A., Neve, R. L., and Dräger, U. C., 1988, Molecular cloning of the “dorsal eye antigen”: homology to the high-affinity laminin receptor, Soc. Neurosci. Abs. 14: 769.Google Scholar
  148. Rakic, P., 1985, Contact regulation of neuronal migration, in: The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants ( G. M. Edelman and J.-P. Thiery, eds.), pp. 67–92, Wiley, New York.Google Scholar
  149. Rao, C. N., Margulies, I. M. K., Troika, T. S., Terranova, V. P., Madri, J. A., and Liotta, L. A., 1982, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257: 9740–9744.PubMedGoogle Scholar
  150. Rao, C. N., Barsky, S. H., Terranova, V. P., and Liotta, L. A., 1983, Isolation of a tumor cell laminin receptor, Biochem. Biophys. Res. Commun. 111: 804–808.PubMedCrossRefGoogle Scholar
  151. Rauvala, H., and Hakomori, S.-I., 1981, Studies on cell adhesion and recognition. III. The occurrence of amannosidase at the fibroblast cell surface, and its possible role in cell recognition, J. Cell Biol. 88: 149159.Google Scholar
  152. Reichardt, L. F., Bixby, J. L., Hall, D. E., Ignatius, M. J., Neugebauer, K. M., and Tomaselli, K. J., 1989, Integrins and cell adhesion molecules: Neuronal receptors that regulate axon growth on extra-cellular matrices and cell surfaces, Dey. Neurosci. 11:in press.Google Scholar
  153. Reh, T. A., Nagy, T., and Gretton, H., 1987, Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin, Nature 330: 68–71.PubMedCrossRefGoogle Scholar
  154. Roberts, D. D., Rao, C. N., Magini, J. L., Spitalnik, S. L., Liotta, L. A., and Ginsberg, V., 1985, Laminin binds specifically to sulfated glycolipids, Proc. Natl. Acad. Sci. USA 82: 1306–1310.PubMedCrossRefGoogle Scholar
  155. Rogers, S. L., Letoumeau, P. C., Palm, S. L., McCarthy, J. B., and Furcht, L. T., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin, Dey. Biol. 98: 212–220.CrossRefGoogle Scholar
  156. Rogers, S. L., McCarthy, J. B., Palm, S. L., Furcht, L. T., and Letoumeau, P. C., 1985, Neuron-specific interactions with two neurite-promoting fragments of fibronectin, J. Neurosci. 5: 369–378.PubMedGoogle Scholar
  157. Rogers, S. L., Edson, K. J., Letoumeau, P. C., and McLoon, S. C., 1986, Distribution of laminin in the developing peripheral nervous system of the chick, Dey. Biol. 113: 429–435.CrossRefGoogle Scholar
  158. Runyan, R. B., Maxwell, G. D., and Shur, B. D., 1986, Evidence for a novel enzymatic mechanism of neural crest cell migration on extracellular glycoconjugate matrices, J. Cell Biol. 102: 432–441.PubMedCrossRefGoogle Scholar
  159. Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238: 491–497.PubMedCrossRefGoogle Scholar
  160. Sakurai, Y., Sullivan, M., and Yamada, Y., 1986, al type IV collagen gene evolved differently from fibrillar collagen genes, J. Biol. Chem. 261: 6654–6657.Google Scholar
  161. Sandrock, A. W., Jr., and Matthew, W. D., 1987, An in vitro neurite promoting antigen functions in axonal regeneration in vivo, Science 237: 1605–1608.PubMedCrossRefGoogle Scholar
  162. Sanes, J. R., Schachner, M., and Covault, J., 1986, Expression of several adhesive macromolecules (N-CAM, Ll, J1, NILE, uvomorulin, laminin, fibronectin and a heparan sulfate proteoglycan) in embryonic, adult and denervated adult skeletal muscle, J. Cell Biol. 102: 420–431.PubMedCrossRefGoogle Scholar
  163. Santoro, S. A., 1986, Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen, Cell 46: 913–920.PubMedCrossRefGoogle Scholar
  164. Sasaki, M., and Yamada, Y., 1987, The laminin B2 chain has a multidomain structure homologous to the B1 chain, J. Biol. Chem. 262: 17111–17117.PubMedGoogle Scholar
  165. Sasaki, M., Kato, S., Kohno, K., Martin, G. R., and Yamada, Y., 1987, Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine-rich repeats, Proc. Natl. Acad. Sci. USA 84: 935–939.PubMedCrossRefGoogle Scholar
  166. Schachner, M., Schoonmaker, G., and Hynes, R. O., 1978, Cellular and subcellular localization of LETS protein in the nervous system, Brain Res. 158: 149–158.PubMedCrossRefGoogle Scholar
  167. Schwarzbauer, J. E., Paul, J. I., and Hynes, R. O., 1985, On the origin of species of fibronectin, Proc. Natl. Acad. Sci. USA 82: 1424–1428.PubMedCrossRefGoogle Scholar
  168. Segui-Real, B., Savagner, P., Ogle, R. C., Huang, T., Martin, G. R., and Yamada, Y., 1988, Unusual features of the laminin receptor predicted from cDNA clones, Fed. Proc. 2: A1551.Google Scholar
  169. Sephel, G. C., Burrows,B. A., and Kleinman, H. K., 1989, Laminin neural activity and binding proteins, Dev. Neurosci. 11:in press.Google Scholar
  170. Shadle, P. J., Ginsberg, M. H., Plow, E. F., and Barondes, S. H., 1984, Platelet–collagen adhesion: Inhibition by a monoclonal antibody that binds glycoprotein Ilb, J. Cell Biol. 99: 2056–2060.PubMedCrossRefGoogle Scholar
  171. Smalheiser, N. R., and Schwartz, N. B., 1987, Cranin: A laminin binding protein of cell membranes, Proc. Natl. Acad. Sci. USA 84: 6457–6461.PubMedCrossRefGoogle Scholar
  172. Smith, D. E., and Furcht, L. T., 1982, Localization of two unique heparin binding domains of human plasma fibronectin with monoclonal antibodies, J. Biol. Chem. 257: 6518–6523.PubMedGoogle Scholar
  173. Sternberg, J., and Kimber, S. J., 1986, Distribution of fibronectin, laminin and entactin in the environment of migrating neural crest cells in early mouse embryos, J. Embryol. Exp. Morphol. 91: 267–282.PubMedGoogle Scholar
  174. Stewart, G. R., and Pearlman, A. L., 1987, Fibronectin-like immunoreactivity in the developing cerebral cortex, J. Neurosci. 7: 3325–3333.PubMedGoogle Scholar
  175. Suzuki, S., Oldberg, A., Hayman, E. G., Pierschbacher, M. D., and Ruoslahti, E., 1985, Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin, EMBO J. 4: 2519–2529.PubMedGoogle Scholar
  176. Suzuki, S., Argraves, W. S., Pytela, R., Arai, H., Krusius, T., Pierschbacher, M. D., and Ruoslahti, E., 1986, cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors, Proc. Natl. Acad. Sci. USA 83: 8614–8618.Google Scholar
  177. Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F., and Hynes, R. O., 1986, Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin, Cell 46: 271–282.PubMedCrossRefGoogle Scholar
  178. Tan, S.-S., Crossin, K. L., Hoffman, S., and Edelman, G. M., 1987, Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest distribution, Proc. Natl. Acad. Sci. USA 84: 7977–7981.PubMedCrossRefGoogle Scholar
  179. Tapley, P., Horwitz, A., Buck, C., Burridge, K., Duggan, K., Hirst, R., and Rohrschneider, L., 1989, Integrins isolated from rous sarcoma virus transformed chicken embryo fibroblasts, Oncogene,in press.Google Scholar
  180. Termine, J. D., Kleinman, H. K., William-Whitsu, S., Conn, K. M., McGarvey, M. L., and Martin, G. R., 1981, Osteonectin, a bone-specific protein linking mineral to collagen, Cell 26: 99–105.PubMedCrossRefGoogle Scholar
  181. Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M., and Liotta, L. A., 1983, Laminin receptor on human breast carcinoma cells, Proc. Natl. Acad. Sci. USA 80: 444–448.PubMedCrossRefGoogle Scholar
  182. Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J.-M., and Martin, G. R., 1979, Laminin—A glycoprotein from basement membranes, J. Biol. Chem. 254: 9933–9937.PubMedGoogle Scholar
  183. Timpl, R., Johansson, S., van Delden, V., Oberbaumer, I., and Hook, M., 1983, Characterization of protease-resistant fragments of laminin mediating attachment and spreading of rat hepatocytes, J. Biol. Chem. 258: 8922–8927.PubMedGoogle Scholar
  184. Timpl, R., Fujiwara, S., Dziadek, M., Aumailley, M., Weber, S., and Engel, J., 1984, Laminin, proteoglycan, nidogen and collagen IV: Structural models and molecular interactions, in: Basement Membranes and Cell Movement, pp. 25–43, Pitman, London.Google Scholar
  185. Timpl, R., Oberbäumer, I., von der Mark, K., Bode, W., Wick, G., Weber, S., and Engel, J., 1985, Structure and biology of the globular domain of basement membrane type IV collagen, Ann. N.Y. Acad. Sci. 460: 58–72.PubMedCrossRefGoogle Scholar
  186. Tomaselli, K. J., Reichardt, L. F., and Bixby, J. L., 1986, Distinct molecular interactions mediate neuronal process outgrowth on nonneuronal cell surfaces and extracellular matrices, J. Cell Biol. 103: 2659–2672.PubMedCrossRefGoogle Scholar
  187. Tomaselli, K. J., Damsky, C. H., and Reichardt, L. F., 1987, Interaction of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: Identification of integrin-related glycoproteins involved in attachment and process outgrowth, J. Cell Biol. 105: 2347–2358.PubMedCrossRefGoogle Scholar
  188. Tomaselli, K. J., Damsky, C. H., and Reichardt, L. F., 1988, Purification and characterization of mam-malian integrins expressed by a rat neuronal cell line (PC12): evidence that they function as a/13 heterodimeric receptors for laminin and type IV collagen, J. Cell Biol. 107: 1241–1252.PubMedCrossRefGoogle Scholar
  189. Toyota, B., Carbonetto, S., and David, S., 1988, Involvement of laminin in nerve regeneration in vivo, Soc. Neurosci. Abs. 14: 498.Google Scholar
  190. Trimmer, J. S., and Vacquier, V. D., 1986, Activation of sea urchin gametes, Annu. Rev. Cell Biol. 2: 126.CrossRefGoogle Scholar
  191. Trüeb, B., Gröbli, B., Spiess, M., Odermatt, B. F., and Winterhalter, K. H., 1982, Basement membrane (type IV) collagen is a heteropolymer, J. Biol. Chem. 257: 5239–5245.PubMedGoogle Scholar
  192. Tuckett, F., and Morriss-Kay, G. M., 1986, The distribution of fibronectin, laminin and entactin in the neurulating rat embryo by indirect immunofluorescence, J. Embryol. Exp. Morphol. 94: 95–112.PubMedGoogle Scholar
  193. Turner, D. C., Flier, L. A., and Carbonetto, S., 1987, Magnesium-dependent attachment and neurite outgrowth by PC12 cells on collagen and laminin substrata, Del,. Biol. 121: 510–525.CrossRefGoogle Scholar
  194. Turner, D. C., Flier, L. A., and Carbonetto, S., 1989, Identification of a cell-surface protein involved in PC12 cell—substratum adhesion and neurite outgrowth on collagen and laminin, J. Neurosci., in press.Google Scholar
  195. Van Harreveld, A., Dafny, N., and Khattab, F. I., 1971, Effects of calcium on the electrical resistance and extracellular space of cerebral cortex, Exp. Neurol. 31: 358–367.PubMedCrossRefGoogle Scholar
  196. von der Mark, K., and Kühl, U., 1985, Laminin and its receptor, Biochim. Biophys. Acta 823: 147–160.PubMedGoogle Scholar
  197. Waite, K. A., Munai, G., and Culp, L. A., 1987, A second cell-binding domain on fibronectin (RGDS-independent) for neurite extension of human neuroblastoma cells, Exp. Cell Res. 169: 311–327.PubMedCrossRefGoogle Scholar
  198. Wayner, E. A., and Carter, W. G., 1987, Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and 13 subunits, J. Cell Biol. 105: 1873–1884.PubMedCrossRefGoogle Scholar
  199. Wewer, U. M., Liotta, L. A., Jaye, M., Ricca, G. A., Drohan, W. N., Claysmith, A. P., Rao, C. N., Wirth, P., Coligan, J. E., Albrechtsen, R., Mudryj, M., and Sobel, M. E., 1986, Altered levels of laminin receptor in various carcinoma cells that have different abilities to bind laminin, Proc. Natl. Acad. Sci. USA 83: 7137–7141.PubMedCrossRefGoogle Scholar
  200. Yamada, K. M., 1983, Cell surface interactions with extracellular materials, Annu. Rev. Biochem. 52: 76 1799.Google Scholar
  201. Yamada, K. M., and Kennedy, D. W., 1984, Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function, J. Cell Biol. 99: 29–36.PubMedCrossRefGoogle Scholar
  202. Yamada, K. M., and Kennedy, D. W., 1987, Peptide inhibitors of fibronectin, laminin, and other adhesion molecules: Unique and shared features, J. Cell Physiol. 130: 21–28.PubMedCrossRefGoogle Scholar
  203. Yamada, K. M., Critchley, D. R., Fishman, P. H., and Moss, J., 1983, Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells, Exp. Cell Res. 143: 295–302.PubMedCrossRefGoogle Scholar
  204. Yow, H., Wang, J. M., Chen, H. S., Lee, C., Steele, G. D., Jr., and Chen, L. B., 1988, Increased mRNA expression of a laminin-binding protein in human colon carcinoma: complete sequence of a full-length cDNA encoding the protein, Proc. Natl. Acad. Sci. USA 85: 6394–6398.PubMedCrossRefGoogle Scholar
  205. Zanetta, J. P., Dontenwill, M., Meyer, A., and Roussel, G., 1985, Isolation and immunohistochemical localization of a lectin-like molecule from the rat cerebellum, Dey. Brain Res. 17: 233–243.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Philippe Douville
    • 1
  • Salvatore Carbonetto
    • 1
  1. 1.Center for Neuroscience ResearchMcGill University, Montreal General Hospital Research InstituteMontrealCanada

Personalised recommendations