Polysialic Acid as a Regulator of Cell Interactions

  • Urs Rutishauser


Polysialic acid, referring specifically to linear homopolymers of α2-8-linked N-acetylneuraminic acid (abbreviated here as PSA), is a remarkable carbohydrate structure. The basis for this statement begins with some surprising general observations: (1) the abundant presence of this structure in three very different biological contexts [bacterial capsules (Finne, 1985; Troy, 1979), fish eggs (Kitajima et al., 1986; Inoue et al., 1987), and surfaces of a variety of vertebrate cells (Finne, 1985; Margolis and Margolis, 1983; Chuong and Edelman, 1984; Finne et al., 1987)], (2) the nearly complete restriction of vertebrate PSA to a single cell surface protein [the neural cell adhesion molecule (NCAM)] (Hoffman et al., 1982; Finne et al., 1983), and (3) the fact that in each of these situations the carbohydrate appears to form a space or barrier around a cell. In this chapter I will focus on the molecular, cell, and tissue biology of NCAM PSA, with particular emphasis on the hypothesis (Rutishauser et al., 1988) that variations in this carbohydrate during development serve as an overall regulator of cell—cell and possibly cell—matrix interactions.


Sialic Acid Neural Cell Adhesion Molecule Wheat Germ Agglutinin Embryonic Chick ChAT Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson, A., and Rutishauser, U., 1988, CAM regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons, J. Cell Biol. 106:479–486.PubMedCrossRefGoogle Scholar
  2. Arquint, M., Roder, J., Chla, L.-S., Down, J., Wilkinson, D., Bayley, H., Braun, P., and Dunn, R., 1987, Molecular cloning and primary structure of myelin-associated glycoprotein, Proc. Natl. Acad. Sci. USA 84:600–604.PubMedCrossRefGoogle Scholar
  3. Barthels, D., Santoni, M.-J., Wille, W., Ruppert, C., Chaix, J.-C., Hirch, M.-R., Fontecilla-Camps, J. C., and Goridis, C., 1987, Isolation and nucleotide sequence of mouse NCAM cDNA that codes for a Mr 79,000 polypeptide without a membrane-spanning region, EMBO J. 6:907–914.PubMedGoogle Scholar
  4. Bennett, H. S., 1963, Morphological aspects of extracellular polysaccharides, J. Histochem. Cytochem. 11:14–23.CrossRefGoogle Scholar
  5. Boller, K., Vestweber, D., and Kemler, R., 1985, Cell-adhesion molecule uvomorulin is localized at the intermediate junctions of adult intestinal epithelial cells, J. Cell Biol. 100:327–332.PubMedCrossRefGoogle Scholar
  6. Breen, K. C., Kelly, P. G., and Regan, C. M., 1987, Postnatal D2-CAM/N-CAM sialylation state is controlled by a developmentally regulated Golgi sialyltransferase, J. Neurochem. 48:1486–1493.PubMedCrossRefGoogle Scholar
  7. Chuong, C.-M., and Edelman, G. M., 1984, Alterations in neural cell adhesion molecules during development of different regions of the nervous system, J. Neurosci. 4:2354–2368.PubMedGoogle Scholar
  8. Cole, G., Loewy, A., Cross, N., Akeson, R., and Glaser, L., 1986, Topographic localization of the heparin-binding domain of the neural cell adhesion molecule N-CAM, J. Cell Biol. 103:1739–1744.PubMedCrossRefGoogle Scholar
  9. Crossing, K. L., Edelman, G. M., and Cunningham, B. A., 1984, Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule, J. Cell Biol.99: 1848–1855.CrossRefGoogle Scholar
  10. Cunningham, B. A., Hoffman, S., Rutishauser, U., Hemperly, J. J., and Edelman, G. M., 1983, Molecular topography of the neural cell adhesion molecule N-CAM: Surface orientation and location of sialic acid-rich and binding regions, Proc. Natl. Acad. Sci. USA 80:3116–3120.PubMedCrossRefGoogle Scholar
  11. Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prediger, E. A., Brackenbury, R., and Edelman, G. M., 1987, Neural cell adhesion molecule: Structure, Immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing, Science 236:799–806.PubMedCrossRefGoogle Scholar
  12. Edelman, G. M., and Chuong, C.-M., 1982, Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice, Proc. Natl. Acad. Sci. USA 79:7036–7040.PubMedCrossRefGoogle Scholar
  13. Finne, J., 1982, Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain, J. Biol. Chem. 257:11966–11970.PubMedGoogle Scholar
  14. Finne, J., 1985, Polysialic acid—A glycoprotein carbohydrate involved in neural adhesion and bacterial meningitis, Trends Biochem. Sci. 10:129–132.CrossRefGoogle Scholar
  15. Finne, J., and Mäkelä, H., 1985, Cleavage of the polysialosyl units of brain glycoproteins by a bacteriophage endosialidase, J. Biol. Chem. 260:1265–1270.PubMedGoogle Scholar
  16. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C., 1983, Occurrence of alpha 2–8 linked polysialosyl units in a neural cell adhesion molecule, Biochem. Biophys. Res. Commun. 112:482–487.PubMedCrossRefGoogle Scholar
  17. Finne, J., Bitter-Suermann, D., Goridis, C., and Finne, U., 1987, An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues, J. Immunol. 138:4402–4407.PubMedGoogle Scholar
  18. Frelinger, A. L., III, and Rutishauser, U., 1986, Topography of NCAM structural and functional determinants. II. Placement of monoclonal antibody epitopes, J. Cell Biol. 103:1729–1737.PubMedCrossRefGoogle Scholar
  19. Friedlander, D. R., Brackenbury, R., and Edelman, G. M., 1985, Conversion of embryonic form to adult forms of N-CAM In vitro: Result from de novo synthesis of adult forms, J. Cell Biol. 101:412–419.PubMedCrossRefGoogle Scholar
  20. Frosch, M., Gorgen, I., Boulnois, G. J., Timmis, D. N., and Bitter-Suermann, D., 1985, NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: Isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli Kl and group B meningococci, Proc. Natl. Acad. Sci. USA 82:1194–1198.PubMedCrossRefGoogle Scholar
  21. Garner, J., Watanabe, M., and Rutishauser, U., 1986, Rapid axonal transport of the neural cell adhesion molecule, J. Neurosci. 6:3242–3249.PubMedGoogle Scholar
  22. Gennarini, F., Him, M., Deagostini-Bazin, H., and Goridis, C., 1984, Studies of the transmembrane disposition of the neural cell adhesion molecule N-CAM. The use of liposome-inserted radioiodinated N-CAM to study its transbilayer orientation, Eur. J. Biochem. 142:65–73.Google Scholar
  23. Gumbiner, B., and Simons, K., 1986, A functional assay for proteins involved in establishing an epithelial occluding barrier: Identification of a uvomorulin-like polypeptide, J. Cell Biol. 102:457–468.PubMedCrossRefGoogle Scholar
  24. Hall, A. K., and Rutishauser, U., 1985, Phylogeny of a neural cell adhesion molecule, Dey. Biol. 110:39–46.Google Scholar
  25. Hall, A. K., and Rutishauser, U., 1987, Visualization of neural cell adhesion molecule by electron microscopy, J. Cell Biol.104: 1579–1586.PubMedCrossRefGoogle Scholar
  26. Hallenbeck, P. C., Vimr, E. R., Yu, F., Bassier, B., and Troy, F. A., 1987, Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-alpha-2,8-sialosyl carbohydrate units, J. Biol. Chem.262: 3553–3561.PubMedGoogle Scholar
  27. Him, M., Ghandour, M. S., Deagostini-Bazin, H., and Goridis, C., 1983, Molecular heterogeneity and structural evolution during cerebellar ontogeny detected by monoclonal antibody of the mouse cell surface antigen BSP-2, Brain Res. 265:87–100.CrossRefGoogle Scholar
  28. Hoffman, S., and Edelman, G. M., 1983, Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule, Proc. Natl. Acad. Sci. USA 80:5762–5766.PubMedCrossRefGoogle Scholar
  29. Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule ( N-CAM) purified from embryonic brain membranes, J. Biol. Chem. 257:7720–7729.PubMedGoogle Scholar
  30. Hoffman, S., Chuong, C., and Edelman, G. M., 1984, Evolutionary conservation of key structures and binding functions of neural cell adhesion molecules, Proc. Natl. Acad. Sci. USA 81:6881–6885.PubMedCrossRefGoogle Scholar
  31. Inoue, S., Kitajima, K., Innue, Y., and Kudo, S., 1987, Localization of polysialoglycoprotein as a major glycoprotein component in cortical alveoli of the unfertilized eggs of Salmo gairdneri, Dey. Biol. 123:442–454.Google Scholar
  32. Jacobson, M., and Rutishauser, U., 1986, Induction of neural cell adhesion molecule ( NCAM) in Xenopus embryos, Dey. Biol. 116:524–531.Google Scholar
  33. James, W. M., and Agnew, W. S., 1987, Multiple oligosaccharide chains in the voltage-sensitive Na channel from Electrophorus electricus: Evidence for 2,8-linked polysialic acid, Biochem. Biophys. Res. Comm. 148:817–826.Google Scholar
  34. Keane, R. W., Parmender, P. M., Rose, B., Honig, L. S., Lowenstein, W. R., and Rutishauser, U., 1988, Neural differentiation, NCAM-mediated adhesion and gap junctional communication in neuroectoderm. A study in vitro, J. Cell Biol. 106:1307–1319.CrossRefGoogle Scholar
  35. Kitajima, K., Inoue, Y., and Inoue, S., 1986, Polysialoglycoproteins of Salmonidae fish eggs, J. Biol. Chem. 261:5262–5269.PubMedGoogle Scholar
  36. Landmesser, L., Dahm, L., Schultz, K., and Rutishauser, U., 1988, Distinct roles for adhesion during innervation of embryonic chick muscle, Dey. Biol. 130 (2):645–670.Google Scholar
  37. Linnemann, D., Lyles, J. M., and Bock, E., 1985, A developmental study of the biosynthesis of the neural cell adhesion molecule, Dey. Neurosci. 7:230–238.Google Scholar
  38. Maier, C. E., Watanabe, M., Singer, M., McQuarrie, I. G., Sunshine, J., and Rutishauser, U., 1986, Expression and function of neural cell adhesion molecule during limb regeneration, Proc. Natl. Acad. Sci. USA 83:8395–8399.CrossRefGoogle Scholar
  39. Margolis, R. K., and Margolis, R. U., 1983, Distribution and characteristics of polysialosyl oligosaccharides in neural tissue glycoproteins, Biochem. Biophys. Res. Commun. 116:889–894.Google Scholar
  40. McCoy, R. D., Vimr, E. R., and Troy, F. A., 1985, CMP-NeuNAc:Poly-a-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules, J. Biol. Chem. 260:12695–12699.PubMedGoogle Scholar
  41. Michon, F., Brisson, J. and Jennings, H., 1987, Conformational differences between linear alpha(2–8)linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide, Biochemistry 26:8399–8405.PubMedCrossRefGoogle Scholar
  42. Roth, J., Taatjest, D. J., Bitter-Suermann, D., and Finne, J., 1987, Polysialic acid units are spatially and temporally expressed in developing postnatal rat kidney, Dey. Biol. 84:1969–1973.Google Scholar
  43. Rothbard, J. B., Brackenbury, R., Cunningham, B. A., and Edelman, G. M., 1982, Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains, J. Biol. Chem. 257:11064–11069.PubMedGoogle Scholar
  44. Rougon, G., Deagostini-Bazin, H., Him, M., and Goridis, C., 1982, Tissue-and developmental stage-specific forms of a neural cell surface antigen linked to differences in glycosylation of a common polypeptide, EMBO J. 1:1239–1244.PubMedGoogle Scholar
  45. Rougon, G., Dubois, C., Buckley, N., Magnani, J. L., and Zollinger, W., 1986, A monoclonal antibody against meningococcus group B polysaccharides distinguishes embryonic from adult N-CAM, J. Cell Biol. 103:2429–2437.PubMedCrossRefGoogle Scholar
  46. Rutishauser, U., and Jessell, T., 1988, Cell adhesion molecules in vertebrate neural development, Phys. Rev. 68 (3):819–857.Google Scholar
  47. Rutishauser, U., Hoffman, S., and Edelman, G. M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci. USA 79:685–689.PubMedCrossRefGoogle Scholar
  48. Rutishauser, U., Grumet, M., and Edelman, G. M., 1983, N-CAM mediates initial interactions between spinal cord neurons and muscle cells in culture, J. Cell Biol. 97:145–152.PubMedCrossRefGoogle Scholar
  49. Rutishauser, U., Watanabe, M., Silver, J., Troy, F. A., and Vimr, E. R., 1985, Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase, J. Cell Biol. 101:1842–1849.PubMedCrossRefGoogle Scholar
  50. Rutishauser, U., Acheson, A., Hall, A. K., Mann, D., and Sunshine, J, 1988, NCAM as a regulator of cell—cell interactions, Science 240:53–57.PubMedCrossRefGoogle Scholar
  51. Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G., and Goridis, C., 1983, Adult and embryonic mouse neural cell adhesion molecules have different binding properties, Nature 304:349.CrossRefGoogle Scholar
  52. Schlosshauer, B., Schwartz, U., and Rutishauser, U., 1984, Topological distribution of different forms of NCAM in the developing chick visual system, Nature 310:141–143.PubMedCrossRefGoogle Scholar
  53. Seed, B., 1987, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2, Nature 329:840–842.PubMedCrossRefGoogle Scholar
  54. Silver, J., and Rutishauser, U., 1984, Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet, Dey. Biol. 106:485–499.CrossRefGoogle Scholar
  55. Simmons, D., Makgoba, M. W., and Seed, B., 1988, ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM, Nature 331:624–627.PubMedCrossRefGoogle Scholar
  56. Small, S. J., Shull, G., Santoni, M.-J., and Akeson, R., 1987, Identification of a cDNA clone that contains the complete coding sequence for a 140-kD rat NCAM polypeptide, J. Cell Biol. 105:2335–2345.PubMedCrossRefGoogle Scholar
  57. Sorkin, B. C., Hoffman, S., Edelman, G. M., and Cunningham, B. A., 1984, Sulfation and phosphorylation of the neural cell adhesion molecule, N-CAM, Science 225:1476–1478.PubMedCrossRefGoogle Scholar
  58. Sunshine, J., Balak, K., Rutishauser, U., and Jacobson, M., 1987, Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development, Proc. Natl. Acad. Sci. USA 84:5986–5990.PubMedCrossRefGoogle Scholar
  59. Takeichi, M., 1987, Cadherins: A molecular family essential for selective cell—cell adhesion and animal morphogenesis, Trends Genet. 3:213–217.CrossRefGoogle Scholar
  60. Thanos, S., Bonhoeffer, F., and Rutishauser, U., 1984, Fiber—fiber interactions and tectal cues influence the development of the chick retinotectal projection, Proc. Natl. Acad. Sci. USA 81:1906–1910.CrossRefGoogle Scholar
  61. Thiery, J.-P., Duband, J.-L., Rutishauser, U., and Edelman, G. M., 1982, Cell adhesion molecules in early chicken embryogenesis, Proc. Natl. Acad. Sci. USA 79:6737–6741.PubMedCrossRefGoogle Scholar
  62. Tosney, K. W., Watanabe, M., Landmesser, L., and Rutishauser, U., 1986, The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis, Dey. Biol. 114:468–481.CrossRefGoogle Scholar
  63. Troy, F. A., 1979, The chemistry and biosynthesis of selected bacterial capsular polymers, Annu. Rev. Microbiol. 33:519–560.PubMedCrossRefGoogle Scholar
  64. Vimr, E. R., McCoy, R. D., Voliger, H. F., Wilkison, N. C., and Troy, F. A., 1984, Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal membranes, Proc. Natl. Acad. Sci. USA 81:1971–1975.PubMedCrossRefGoogle Scholar
  65. Volk, T., and Geiger, B., 1986, A-CAM: A 135-KD receptor of intercellular adherens junctions. I. Immunoelectron microscope localization and biochemical studies, J. Cell Biol. 103:1441–1450.PubMedCrossRefGoogle Scholar
  66. Warren, L., 1963, The distribution of sialic acids in nature, Comp. Biochem. Physiol. 10:153–171.PubMedCrossRefGoogle Scholar
  67. Watanabe, M., Frelinger, A. L., III, and Rutishauser, U., 1986, Topology of NCAM structural and functional determinants. I. Classification of monoclinal antibody types, J. Cell Biol. 103:1721–1727.PubMedCrossRefGoogle Scholar
  68. Wille, W., and Trenkner, E., 1981, Changes in particulate neuraminidase activity during normal and staggerer mutant mouse development, J. Neurochem. 37:443–446.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Urs Rutishauser
    • 1
  1. 1.Department of Genetics and Center for NeuroscienceCase Western Reserve University, School of MedicineClevelandUSA

Personalised recommendations