Synaptic Vesicle Glycoproteins and Proteoglycans

  • Steven S. Carlson

Abstract

Immunological markers specific for synaptic vesicles have been helpful in studying synapse regeneration (Glicksman and Sanes, 1983), development (Chun and Shatz, 1983), and tracing membrane traffic in the nerve terminal (von Wedel et al., 1981). Vesicle-specific antibodies have also identified a number of vesicle proteins. This chapter deals with four antigenic integral membrane proteins of the synaptic vesicle. These proteins, identified with monoclonal antibodies, are the best characterized vesicle membrane components. Three of these proteins are probably present in all vesicles of the regulated pathway of neuroendocrine cells. This includes both dense-core vesicles and small, clear synaptic vesicles. The cDNA for one of these proteins, p38, has been cloned and sequenced. The fourth protein is an integral membrane proteoglycan (SVPG) which has been found in some synaptic vesicles, but could have a wider distribution. Interestingly, this proteoglycan shares a unique antigenic site with a putative nerve terminal anchorage protein, TAP-1.

Keywords

Synaptic Vesicle Secretory Granule Integral Membrane Protein Antigenic Site Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahler, M., and Greengard, P., 1987, Synapsin I bundles F-actin in a phosphorylation-dependent manner, Nature 326: 704–707.PubMedCrossRefGoogle Scholar
  2. Bahr, B. A., and Parsons, S. M., 1987, The Vesamicol (AH 5183) receptor in VPt cholinergic synaptic vesicles: Partial purification, Soc. Neurosci. Abstr. 13: 670.Google Scholar
  3. Baines, A. J., 1987, Synapsin I and the cytoskeleton, Nature 326: 646.PubMedCrossRefGoogle Scholar
  4. Bixby, J. L., and Reichardt, L. F., 1985, The expression and localization of synaptic vesicle antigens at neuromuscular junctions in vitro, J. Neurosci. 5: 3070–3080.PubMedGoogle Scholar
  5. Bordier, C., 1981, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem. 256: 1604–1607.PubMedGoogle Scholar
  6. Borroni, E., Ferretti, P., Fiedler, W., and Fox, G. Q., 1985, The localization and rate of disappearance of a synaptic vesicle antigen following denervation, Cell Tissue Res. 241: 367–372.PubMedCrossRefGoogle Scholar
  7. Breckenridge, L. J., and Almers, W., 1987, Currents through the fusion pore that forms during exocytosis of a secretory vesicle, Nature 328: 814–817.PubMedCrossRefGoogle Scholar
  8. Browning, M. D., Huganir, R., and Greengard, P., 1985, Protein phosphorylation and neuronal function, J. Neurochem. 45: 11–23.PubMedCrossRefGoogle Scholar
  9. Brunner, J., Hauser, J., and Semenza, G., 1978, Single bilayer lipid—protein vesicles formed from phosphatidylcholine and small intestinal sucrase-isomaltase, J. Biol. Chem. 253: 7538–7546.Google Scholar
  10. Buckley, K., and Kelly, R. B., 1985, Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells, J. Cell Biol. 100: 1284–1294.PubMedCrossRefGoogle Scholar
  11. Buckley, K., Schweitzer, E. S., Miljanich, G. P., Clift-O’Grady, L., Kushner, P. D., Reichardt, L. F., and Kelly, R. B., 1983, A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane, Proc. Natl. Acad. Sci. USA 80: 7342–7346.PubMedCrossRefGoogle Scholar
  12. Buckley, K. M., Floor, E., and Kelly, R. B., 1987, Cloning and sequence analysis of cDNA encoding p38, a major synaptic vesicle protein, J. Cell Biol. 105: 2447–2456.PubMedCrossRefGoogle Scholar
  13. Burgess, T. L., and Kelly, R. B., 1987, Constitutive and regulated secretion of proteins, Annu. Rev. Cell Biol. 3: 243–293.PubMedCrossRefGoogle Scholar
  14. Burry, R. W., Ho, R. H., and Matthew, W. D., 1986, Presynaptic elements formed on polylycine-coated beads contain synaptic vesicle antigens, J. Neurocytol. 15: 409–419.PubMedCrossRefGoogle Scholar
  15. Carlson, S. S., and Kelly, R. B., 1980, An antiserum specific for cholinergic synaptic vesicles from electric organ, J. Cell Biol. 87: 98–103.PubMedCrossRefGoogle Scholar
  16. Carlson, S. S., and Kelly, R. B., 1983, A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles, J. Biol. Chem. 258: 11082–11091.PubMedGoogle Scholar
  17. Carlson, S. S., and Wight, T., 1987, Nerve terminal anchorage protein 1 (TAP-1) is a chondroitin sulfate proteoglycan: Biochemical and electron microscopic characterization, J. Cell Biol. 105: 3075–3086.PubMedCrossRefGoogle Scholar
  18. Carlson, S. S., Wagner, J. A., and Kelly, R. B., 1978, Purification of synaptic vesicles from elasmobranch electric organ and the use of biophysical criteria to demonstrate purity, Biochemistry 17: 1188–1199.PubMedCrossRefGoogle Scholar
  19. Carlson, S. S., Caroni, P., and Kelly, R. B., 1986, A nerve terminal anchorage protein from electric organ, J. Cell Biol. 103: 509–520.PubMedCrossRefGoogle Scholar
  20. Caroni, P., Carlson, S. S., Schweitzer, E., and Kelly, R. B., 1985, Presynaptic neurons may contribute a unique glycoprotein to the extracellular matrix at the synapse, Nature 314: 441–443.PubMedCrossRefGoogle Scholar
  21. Chun, J. J. M., and Shatz, C. J., 1983, Immunochemical localization of synaptic vesicle antigens in developing cat cortex, Soc. Neurosci. Abstr. 9: 692.Google Scholar
  22. De Camilli, P., Cameron, R., and Greengard, P., 1983, Synapsin 1 (protein 1), a nerve terminal-specific phosphoprotein. 1. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections, J. Cell Biol. 96: 1337–1354.PubMedCrossRefGoogle Scholar
  23. Devoto, S. H., and Barnstable, C. J., 1987, SVP38: A synaptic vesicle protein whose appearance correlates closely with synaptogenesis in the rat nervous system, Ann. N.Y. Acad. Sci. 493: 493–496.CrossRefGoogle Scholar
  24. Elliot, J., Blanchard, S. G., Woo, W., Miller, J., Strader, C. D., Hartig, P., Moore, H.-P., Racs, J., and Raftery, M. A., 1980, Purification of Torpedo californica post-synaptic membranes and fractionation of their constituent polypeptides, Biochem. J. 185: 667–677.Google Scholar
  25. Floor, E., and Leeman, S. E., 1985, Evidence that large synaptic vesicles containing substance P and small synaptic vesicles have a surface antigen in common in rat, Neurosci. Lett. 60: 231–237.PubMedCrossRefGoogle Scholar
  26. Gilula, N. B., 1985, Gap junctional contact between cells, in: The Cell in Contact (G. M. Edelman and J.-P. Thiery, eds.), pp. 395–409, Wiley, New York.Google Scholar
  27. Glicksman, M. A., and Sanes, J. R., 1983, Differentiation of motor nerve terminals formed in the absence of muscle fibres, J. Neurocytol. 12: 661–671.PubMedCrossRefGoogle Scholar
  28. Godfrey, E. W., Nitkin, R. M., Wallace, B. G., Rubin, L. L., and McMahan, U. J., 1984, Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells, J. Cell Biol. 99: 615–627.PubMedCrossRefGoogle Scholar
  29. Green, P. J., Pines, O., and Inouye, M., 1986, The role of antisense RNA in gene regulation, Annu. Rev. Biochem. 55: 569–597.PubMedCrossRefGoogle Scholar
  30. Greif, K. F., and Reichardt, L. F., 1982, Appearance and distribution of neuronal cell surface and synaptic vesicle antigens in the developing rat superior cervical ganglion, J. Neurosci. 2: 843–852.PubMedGoogle Scholar
  31. Griffiths, G., and Simons, K., 1986, The trans Golgi network: Sorting of the exit site of the Golgi complex, Science 234: 438–443.PubMedCrossRefGoogle Scholar
  32. Harlos, P., Lee, D. A., and Stadtler, H., 1984, Characterization of a Mgt+-ATPase and a proton pump in cholinergic synaptic vesicles from the electric organ of Torpedo marmorata, Eur. J. Biochem. 144: 441–446.PubMedCrossRefGoogle Scholar
  33. Hascall, V. C., and Hascall, G. K., 1981, Proteoglycans, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 39–63, Plenum Press, New York.CrossRefGoogle Scholar
  34. Hassell, J. R., Kimura, J. H., and Hascall, V. C., 1986, Proteoglycan core protein families, Annu. Rev. Biochem. 55: 539–567.PubMedCrossRefGoogle Scholar
  35. Heinegârd, D., and Sommarin, Y., 1987, Isolation and characterization of proteoglycans, Methods Enzymol. 144: 319–373.PubMedCrossRefGoogle Scholar
  36. Heuser, J. E., and Reese, T. S., 1973, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol. 57: 315–344.PubMedCrossRefGoogle Scholar
  37. Heuser, J. E., and Reese, T. S., 1981, Structural changes after transmitter release at the frog neuromuscular junction, J. Cell Biol. 88: 564–580.PubMedCrossRefGoogle Scholar
  38. Heuser, J. E., and Salpeter, S. R., 1979, Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane, J. Cell Biol. 82: 150–173.PubMedCrossRefGoogle Scholar
  39. Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Yan, L., and Evans, L. J., 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81: 275–300.PubMedCrossRefGoogle Scholar
  40. Buttner, W. B., Schiebler, W., Greengard, P., and De Camilli, P., 1983, Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation, J. Cell Biol. 96: 1374–1388.CrossRefGoogle Scholar
  41. Izant, G. J., and Weintraub, H., 1984, Inhibition of thymidine kinase gene expression by anti-sense RNA: A molecular approach to genetic analysis, Cell 36: 1007–1015.PubMedCrossRefGoogle Scholar
  42. Jahn, R., Schiebler, W., Ouimet, C., and Greengard, P., 1985, A 38,000-dalton membrane protein (p38) present in synaptic vesicles, Proc. Natl. Acad. Sci. USA 82: 4137–4141.PubMedCrossRefGoogle Scholar
  43. Jahn, R., Navone, F., Greengard, P., and De Camilli, P., 1987, Biochemical and immunochemical characterization of p38, an integral membrane glycoprotein of small synaptic vesicles, Ann. N.Y. Acad. Sci. 493: 497–498.CrossRefGoogle Scholar
  44. Jones, D. H., and Matus, A. I., 1974, Isolation of synaptic plasma membranes from brain by combined flotation—sedimentation density gradient centrifugation, Biochim. Biophys. Acta 356: 276–287.Google Scholar
  45. Kelly, R. B., 1985, Pathways of protein secretion in eukaryotes, Science 230: 25–32.PubMedCrossRefGoogle Scholar
  46. Kelly, R. B., and Hooper, J. E., 1982, Cholinergic vesicles, in: The Secretory Granule (A. M. Poisner and J. M. Trifaro, eds.), pp. 81–118, Elsevier/North-Holland, Amsterdam.Google Scholar
  47. Kelly, R. B., and Reichardt, L. R., 1983, A molecular description of nerve terminal function, Annu. Rev. Biochem. 52: 871–926.PubMedCrossRefGoogle Scholar
  48. Kelly, R. B., Deutsch, J. W., Carlson, S. S., and Wagner, J. A., 1979, Biochemistry of neurotransmitter release, Annu. Rev. Neurosci. 2: 399–446.PubMedCrossRefGoogle Scholar
  49. Kelly, R. B., Buckley, K. M., Burgess, T. L., Carlson, S. S., Caroni, P., Hooper, J. E., Katzen, A., Moore, H-P, Pfeffer, S. R., and Schroer, T. A., 1983, Membrane traffic in neurons and peptide-secreting cells, Cold Spring Harbor Symp. Quant. Biol. 48: 697–705.PubMedCrossRefGoogle Scholar
  50. Kelly, R. B., Carlson, S. S., and Caroni, P., 1987, Extracellular matrix components of the synapse, in: The Biology of the Extracellular Matrix, Vol. 2 (T. N. Wight and R. P. Mecham, eds.), pp. 247–265, Academic Press, New York.Google Scholar
  51. Kilimane, M. W., and DeGennaro, L. J., 1985, Molecular cloning of cDNAs for the nerve-cell specific phosphoprotein, synapsin I, EMBO J. 4: 1997–2002.Google Scholar
  52. Kim, S. K., and Wold, B. J., 1985, Stable reduction of thymidine kinase activity in cells expressing high levels of antisense RNA, Cell 42: 129–138.PubMedCrossRefGoogle Scholar
  53. Krebs, K. E., Zagon, I. S., Sihag, R., and Goodman, S. R., 1987, Brain protein 4.1 subtypes: A working hypothesis, BioEssays 6: 274–279.PubMedCrossRefGoogle Scholar
  54. Kushner, P., and Reichardt, L. F., 1981, Monoclonal antibodies against Torpedo synaptosomes, Soc. Neurosci. Abstr. 7: 120.Google Scholar
  55. Lee, D. A., and Witzemann, V., 1983, Photoaffinity labeling of a synaptic vesicle specific nucleotide transport system from Torpedo mormorata, Biochemistry 22: 6123–6130.PubMedCrossRefGoogle Scholar
  56. Leube, R. E., Kaiser, P., Seiter, A., Zimbelmann, R., Franke, W. W., Rehm, H., Knaus, P., Prior, P., Betz, H., Reinke, H., Beyreuther, K., and Wiedenmann, B., 1987, Synaptophysin: Molecular organization and mRNA expression as determined from cloned cDNA, EMBO J. 6: 3261–3268.PubMedGoogle Scholar
  57. Linstedt, A. D., and Kelly, R. B., 1987, Overcoming barriers to exocytosis, Trends Neurosci. 10: 446–448.CrossRefGoogle Scholar
  58. Llinas, R. R., and Heuser, J. E., 1977, Depolarization—release coupling systems in neurons, Neurosci. Res. Prog. Bull. 15 (4): 560–687.Google Scholar
  59. Llinas, R R, McGuinness, T. L., Leonard, C. S., Sugimori, M., and Greengard, P., 1985, Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Natl. Acad. Sci. USA 82: 3035–3039.PubMedCrossRefGoogle Scholar
  60. Lowe, A. W., Madeddu, L, and Kelly, R. B., 1988, Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common, J. Cell Biol. 106: 51–59.PubMedCrossRefGoogle Scholar
  61. Marshall, I. G., and Parsons, S. M., 1987, The vesicular acetylcholine transport system, Trends Neurosci. 10: 174–177.CrossRefGoogle Scholar
  62. Matthew, W. D., 1981, Biochemical studies using monoclonal antibodies to neural antigens, Ph.D. thesis, University of California, San Francisco.Google Scholar
  63. Matthew, W. D., Tsavaler, L., and Reichardt, L. F., 1981a, Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue, J. Cell Biol. 91: 257–269.PubMedCrossRefGoogle Scholar
  64. Matthew, W. D., Reichardt, L. F., and Tsavaler, L., 198 lb, Monoclonal antibodies to synaptic membranes and vesicles, in: Monoclonal Antibodies to Neural Antigens (R. McKay, M. C. Raff, and L. F. Reichardt, eds.), pp. 163–180, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  65. McCaffery, C. A., and DeGennaro, L. J., 1986, Determination and analysis of the primary structure of the nerve terminal specific phosphoprotein, synapsin I, EMBO J. 5: 3167–3173.PubMedGoogle Scholar
  66. Miljanich, G. P., Brasier, A. R., and Kelly, R. B., 1982, Partial purification of presynaptic plasma membrane by immunoadsorption, J. Cell Biol. 94: 88–96.PubMedCrossRefGoogle Scholar
  67. Navone, F., Greengard, P., and DeCamilli, P., 1984, Synapsin I in nerve terminals: Selective association with small synaptic vesicles, Science 226: 1209–1211.PubMedCrossRefGoogle Scholar
  68. Navone, F., Jahn, R., Di Gioia, G., Stukenbrok, H., Greengard, P., and DeCamilli, P., 1986, Protein p38: An integral membrane protein specific for small vesicles of neurons and neuroendocrine cells, J. Cell Biol. 103: 2511–2527.PubMedCrossRefGoogle Scholar
  69. Nitkin, R. M., Smith, M. A., Magill, C., Fallon, J. R., Yao, Y.-M., Wallace, B. G., and McMahan, U. J., 1987, Identification of agrin, a synaptic organizing protein from Torpedo electric organ, J. Cell Biol. 105: 2471–2478.PubMedCrossRefGoogle Scholar
  70. Obata, K., Nishiye, H., Fujita, S., Shirao, T., Inoue, H., and Uchizono, K., 1986, Identification of a synaptic vesicle-specific 38,000 dalton protein by monoclonal antibodies, Brain Res. 375: 37–48.PubMedCrossRefGoogle Scholar
  71. Obata, K., Kojima, N., Nishiye, H., Inoue, H., Shirao, T., Fujita, S., and Uchizono, K., 1987, Four synaptic vesicle-specific proteins: Identification by monoclonal antibodies and distribution in the nervous tissue and the adrenal medulla, Brain Res. 404: 169–179.PubMedCrossRefGoogle Scholar
  72. Orci, L., Glick, B. S., and Rothman, J. E., 1986, A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack, Cell 46: 171–184.Google Scholar
  73. Patzak, A., and Winkler, H., 1986, Exocytotic exposure and recycling of membrane antigens of chromaffm granules: Ultrastructural evaluation after immunolabeling, J. Cell Biol. 102: 510–515.PubMedCrossRefGoogle Scholar
  74. Paul, D. L., 1986, Molecular cloning of cDNA for rat liver gap junction protein, J. Cell Biol. 103: 123–134.PubMedCrossRefGoogle Scholar
  75. Pearse, B. M. F., 1987, Clathrin and coated vesicles, EMBO J. 6: 2507–2512.PubMedGoogle Scholar
  76. Petrucci, T. C., and Morrow, J. S., 1987, Synapsin I: An actin-bundling protein under phosphorylation control, J. Cell Biol. 105: 1335–1363.CrossRefGoogle Scholar
  77. Pfeffer, S. R., and Kelly, R. B., 1985, The subpopulation of brain coated vesicles that carry synaptic vesicle proteins contains two unique polypeptides, Cell 40: 949–957.PubMedCrossRefGoogle Scholar
  78. Pfeffer, S. R., and Rothman, J. E., 1987, Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi, Annu. Rev. Biochem. 56: 829–852.PubMedCrossRefGoogle Scholar
  79. Rehm, H., Wiedemann, B., and Betts, H., 1986, Molecular characterization of synaptophysin, a major calcium-binding protein of synaptic vesicle membrane, EMBO J. 5: 535–541.PubMedGoogle Scholar
  80. Reist, N. E., Magill, C., and McMahan, U. J., 1987, Agrin-like molecules at synaptic sites in normal, denervated, and damaged skeletal muscles, J. Cell Biol. 105: 2457–2469.PubMedCrossRefGoogle Scholar
  81. Rephaeli, A., and Parsons, S. M., 1982, Calmodulin stimulation of 45Ca2+ transport and protein phosphorylation in cholinergic synaptic vesicles, Proc. Natl. Acad. Sci. USA 79: 5783–5787.PubMedCrossRefGoogle Scholar
  82. Sanes, J. R., and Chiu, A. Y., 1983, The basal lamina of the neuromuscular junction, Cold Spring Harbor Symp. Quant. Biol. 48; 667–678.PubMedCrossRefGoogle Scholar
  83. Sanes, J. R., Marshall, L. M., and McMahan, U. J., 1978, Reinnervation of muscle fiber basal lamina after removal of myofibers, J. Cell Biol. 78: 176–198.PubMedCrossRefGoogle Scholar
  84. Sarthy, P. J., and Bacon, W., 1985, Developmental expression of a synaptic vesicle-specific protein in the rat retina, Dey. Biol. 112: 284–291.CrossRefGoogle Scholar
  85. Schiebler, W., Jahn, R., Doucet, J.-P., Rothlein, J., and Greengard, P., 1986, Characterization of synapsin I binding to small synaptic vesicles, J. Biol. Chem. 261: 8383–8390.PubMedGoogle Scholar
  86. Schroer, T. A., Brady, S. T., and Kelly, R. B., 1985, Fast axonal transport of foreign synaptic vesicles in squid axoplasm, J. Cell Biol. 101: 568–572.PubMedCrossRefGoogle Scholar
  87. Stadler, H., and Dowe, G. H. C., 1982, Identification of a heparan sulfate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo mormorata, EMBO J. 1: 1381–1384.Google Scholar
  88. Stadler, H., and Fenwick, E. M., 1983, Cholinergic synaptic vesicles from Torpedo mormorata contain an atractyloside-binding protein related to the mitochondrial ADP/ATP carrier, Eur. J. Biochem. 136: 377–382.PubMedCrossRefGoogle Scholar
  89. Stadler, H., and Kiene, M.-L., 1987, Synaptic vesicles in electromotoneurones. II. Heterogeneity of populations is expressed in uptake properties; exocytosis and insertion of a core proteoglycan into the extracellular matrix, EMBO J. 6: 2217–2221.PubMedGoogle Scholar
  90. Stadler, H., and Whittaker, V. P., 1978, Identification of vesiculin as a glycosaminoglycan, Brain Res. 153: 408–413.PubMedCrossRefGoogle Scholar
  91. Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E., and Jahn, R., 1987, A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions, Science 238: 1142–1144.PubMedCrossRefGoogle Scholar
  92. Tashiro, T., and Stadler, H., 1978, Chemical composition of cholinergic synaptic vesicles from Torpedo mormorata based on improved purification, Eur. J. Biochem. 90: 479–487.PubMedCrossRefGoogle Scholar
  93. Unwin, N., 1986, Is there a common design for cell membrane channels? Nature 323: 12–13.PubMedCrossRefGoogle Scholar
  94. Volknandt, W., and Zimmerman, H., 1986, Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm, J. Neurochem. 47: 1449–1462.PubMedCrossRefGoogle Scholar
  95. Volknandt, W., Naito, S., Ueda, T., and Zimmerman, H., 1987, Synapsin 1 is associated with cholinergic nerve terminals in the electric organs of Torpedo electrophorus, and Malapterurus and copurifies with Torpedo synaptic vesicles, J. Neurochem. 49: 342–347.PubMedCrossRefGoogle Scholar
  96. von Wedel, R. J., Carlson, S. S., and Kelly, R. B., 1981, Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis, Proc. Natl. Acad. Sci. USA 78: 1014–1018.CrossRefGoogle Scholar
  97. Walker, J. H., and Agoston, D. V., 1987, The synaptic vesicle and the cytoskeleton, Biochem. J. 247: 249–258.PubMedGoogle Scholar
  98. Walker, J. H., Obrocki, J., and Zimmerman, C. W., 1983, Identification of a proteoglycan antigen characteristic of cholinergic synaptic vesicles, J. Neurochem. 41: 209–216.PubMedCrossRefGoogle Scholar
  99. Walker, J. H., Kristjansson, G. I., and Stadler, H., 1986, Identification of a synaptic vesicle antigen (Mr 86,000) conserved between Torpedo and rat, J. Neurochem. 46: 875–881.PubMedCrossRefGoogle Scholar
  100. Wang, Y.-J., and Mahler, H. R., 1976, Topography of the synaptosomal membrane, J. Cell Biol. 71: 639–658.PubMedCrossRefGoogle Scholar
  101. White, J. M., and Wilson, I. A., 1987, Anti-peptide antibodies detect steps in a protein conformational change: Low-pH activation of the influenza virus hemagglutinin, J. Cell Biol. 105: 2887–2896.PubMedCrossRefGoogle Scholar
  102. White, J. M., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biopbys. 16: 151–195.CrossRefGoogle Scholar
  103. Wiedemann, B., and Franke, W. W., 1985, Identification and localization of synaptophysin, an integralGoogle Scholar
  104. membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles, Cell 41: 1017–1028.Google Scholar
  105. Wiedemann, B., Franke, W. W., Kuhn, C., Moll, R., and Gould, V. E., 1986, Synaptophysin: A marker protein for neuroendocrine cells in neoplasms, Proc. Natl. Acad. Sci. USA 83: 3500–3504.CrossRefGoogle Scholar
  106. Winkler, H., 1987, Composition and transport function of membranes of chromaffin granules, Ann. N.Y. Acad. Sci. 493: 252–258.PubMedCrossRefGoogle Scholar
  107. Winkler, H., and Carmichael, S. W., 1982, The chromaffin granule, in: The Secretory Granule (A. M. Poisner and J. M. Trifaro, eds.), pp. 3–79, Elsevier/North-Holland, AmsterdamGoogle Scholar
  108. Yamagata, S. K., and Parsons, S. M., 1987, Molecular weight and purification of the Ca2+/Mg2+ ATPase of cholinergic synaptic vesicles, Soc. Neurosci. Abstr. 13: 671.Google Scholar
  109. Yanagishita, M., Midura, R. J., and Hascall, V. C., 1987, Proteoglycans: Isolation and purification from tissue cultures, Methods Enzymol. 138: 279–289.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Steven S. Carlson
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of WashingtonSeattleUSA

Personalised recommendations