Time-Dependent Nanoindentation

  • Anthony C. Fischer-Cripps
Part of the Mechanical Engineering Series book series (MES)


In general, materials can resist deformation in a solid-like or viscous-like manner. Solid-like materials store energy under deformation, and upon removal of stress, returns to its original state. Viscous materials dissipate energy during deformation and upon removal of stress, remains in its deformed state. Materials with combined solid-like and viscous-like properties are said to be viscoelastic. Nanoindentation can be used to quantitatively determine the viscoelastic properties of materials. In one method, a small oscillatory force or displacement is imparted to the indenter. The resulting load and displacement signals provide a method whereby the elastic and viscous components of the specimen response can be calculated. In another method, the load or displacement is held at a fixed value and the change in displacement (creep) or load (relaxation) recorded over a period of time. Application of an appropriate mechanical model can yield values for the elastic and viscous properties of the specimen.


Transfer Function Storage Modulus Indentation Depth Loss Modulus Indentation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kulkami and B. Bhushan, “Nano/picoindentation measurements on a single-crystal aluminium using modified atomic force microscopy,” Mat. Lett. 29, 1996, pp. 221–227.CrossRefGoogle Scholar
  2. 2.
    S. Akita, H. Nishijima, T. Kishida and Y. Nakayama, “Nanoindentation of polycarbonate using a carbon nanotube tip,” Jpn. J. Appl. Phys. 39, 2000, pp. 7086–7089.CrossRefGoogle Scholar
  3. 3.
    S.A. Syed Asif, R.J. Colton, and K.J. Wahl, “Nanoscale surface mechanical property measurements: Force modulation techniques applied to nanoindentation,” in Interfacial properties on the submicron scale, J. Frommer and R. Overney, eds. ACS Books, Washington, DC, 2001, pp. 189–215.Google Scholar
  4. 4.
    S.A. Syed Asif, K.J. Wahl, and R.J. Colton, `The influence of oxide and adsorbates on the nanomechanical response of silicon surfaces,“ J. Mater. Res. 15 2, 2000, pp. 546–553.CrossRefGoogle Scholar
  5. 5.
    B.N. Lucas, W.C. Oliver, and J.E. Swindeman, “The dynamics of frequency specific, depth sensing indentation testing,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 3–14.CrossRefGoogle Scholar
  6. 6.
    J.-L. Loubet, B.N. Lucas, and W.C. Oliver, in NIST Special Publication 896, Conference Proceedings: International Workshop on Instrumented Indentation, eds. D.T. Smith (MIST) 1995, pp. 31–34.Google Scholar
  7. 7.
    N.A. Burnham, S.P. Baker, and H.M. Pollock, “A model for mechanical properties of nanoprobes,” J. Mater. Res. 15 9, 2000, pp. 2006–2014.CrossRefGoogle Scholar
  8. 8.
    A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, “Indentation of a power law creeping solid,” Proc. Roy. Soc. A441 1993, pp. 97–124.Google Scholar
  9. 9.
    W.B. Li and R. Warren, “A model for nano-indentation creep,” Acta Metall. Mater. 41 10, 1993, pp. 3065–3069.Google Scholar
  10. 10.
    P.M. Sargent and M.F. Ashby, “Indentation creep,” Mat. Sci. and Tech. 8, 1992, pp. 594–601.CrossRefGoogle Scholar
  11. 11.
    R. Hill, B. Storâkers, A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. Roy. Soc. A423 1989, pp. 301–330.Google Scholar
  12. 12.
    T.R.G. Kutty, C. Ganguly and D.H. Sastry, “Development of creep curves from hot indentation hardness data,” Scripta Materialia, 34 12, 1996, pp. 1833–1838.CrossRefGoogle Scholar
  13. 13.
    R. Hill, “Similarity analysis of creep indentation tests,” Proc. Roy. Soc. A436, 1992, pp. 617–630.CrossRefGoogle Scholar
  14. 14.
    B. Storllkers and P.-L. Larsson, “On Brinell and Boussinesq indentation of creeping solids,” J. Mech. Phys. Solids, 42 2, 1994,pp. 307–332.CrossRefGoogle Scholar
  15. 15.
    M. Sakai, “Time-dependent viscoelastic relation between load and penetration for an axisummetric indenter,” Phil. Mag. A 82 10, 2002, pp. 1841–1849.CrossRefGoogle Scholar
  16. 16.
    S.Dj. Mesarovic and N.A. Fleck, “Spherical indentation of elastic-plastic solids,” Proc. Roy. Soc. A455, 1999, pp. 2707–2728.CrossRefGoogle Scholar
  17. 17.
    J.R.M. Radok, “Viscoelastic stress analysis,” Q. Appl. Math. 15, 1957, pp. 198–202.Google Scholar
  18. 18.
    E.H. Lee and J.R.M. Radok, “The contact problem for viscoelastic solids,” Trans. ASME Series E, J.App.Mech. 27, 1960, pp. 438–444.CrossRefGoogle Scholar
  19. 19.
    K.L. Johnson, Contact Mechanics, Cambridge University Press, 1985.Google Scholar
  20. 7.
    Time-Dependent Nanoindentation 131Google Scholar
  21. 20.
    L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich, “Flat-punch indentation of a viscoelastic material,” J. Polymer Sci. 38, 2000, pp. 10–22.Google Scholar
  22. 21.
    T.C.T. Ting, “The contact stresses between a rigid indenter and a viscoelastic half-space,” Trans. ASME, J. App. Mech. 33, 1966, pp. 845–854.CrossRefGoogle Scholar
  23. 22.
    M. Sakai and S. Shimizu, “Indentation rheometry for glass-forming materials,” J. Non-Crystalline Solids, 282, 2001, pp. 236–247.CrossRefGoogle Scholar
  24. 23.
    S. Shimizu, Y. Yanagimoto and M. Sakai, “Pyramidal indentation load-depth curve of viscoelastic materials,” J. Mater. Res. 14 10, 1999, pp. 4075–4085.CrossRefGoogle Scholar
  25. 24.
    X. Xia, A. Strojny, L.E. Scriven, W.W. Gerberich, A. Tsou, and C.C. Anderson, “Constitutive property evaluation of polymeric coatings using nanomechancial methods,” Mat. Res. Symp. Proc. 522, 1998, 199–204.CrossRefGoogle Scholar
  26. 25.
    K.B. Yoder, S. Ahuja, K.T. Dihn, D.A. Crowson, S.G. Corcoran, L. Cheng, and W.W. Gerberich, “Nanoindentation of viscoelastic materials: Mechanical properties of polymer coatings an aluminum sheets,” Mat. Res. Symp. 522, 1998, pp. 205–210.CrossRefGoogle Scholar
  27. 26.
    G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res. 17 3, 2002, pp. 660 — 668.Google Scholar
  28. 27.
    A.H.W. Ngan and B. Tang, “Viscoelastic effects during unloading in depth-sensing indentation,” J. Mater. Res. 17 10, 2002, pp. 2604–2610.CrossRefGoogle Scholar
  29. 28.
    L. Cheng, L.E. Scriven, and W.W. Gerberich, “Viscoelastic analysis of micro-and nanoindentation,” Mat. Res. Symp. Proc. 522, 1998, pp. 193–198.CrossRefGoogle Scholar
  30. 29.
    M.L. Oyen and R.F. Cook, “Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials,” J. Mater. Res. 18 1, 2003, pp. 139–150.CrossRefGoogle Scholar
  31. 30.
    A. Strojny and W.W. Gerberich, “Experimental analysis of viscoelastic behavior in nanoindentation,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 159–164.CrossRefGoogle Scholar
  32. 31.
    S.A. Syed Asif and J.B. Pethica, “Nano-scale indentation creep testing at non-ambient temperatures,” J.Adhesion, 67, 1998, pp. 153–165.CrossRefGoogle Scholar
  33. 32.
    T. Chudoba and F. Richter, “Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results,” Surf. Coat. Tech. 148, 2001, pp. 191–198.CrossRefGoogle Scholar
  34. 33.
    D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Kluwer Academic Publishers, The Netherlands, 1998.CrossRefGoogle Scholar
  35. 34.
    B.J. Briscoe, L. Fiori and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D. Appl. Phys. 31, 1998, pp. 2395–2405.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Anthony C. Fischer-Cripps
    • 1
  1. 1.CSIROLindfieldAustralia

Personalised recommendations