Skip to main content

Analysis of Nanoindentation Test Data

  • Chapter

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

As described in Chapter 2, estimations of both elastic modulus and hardness of the specimen material in a nanoindentation test are obtained from load versus penetration measurements. Rather than a direct measurement of the size of residual impressions, contact areas are instead calculated from depth measurements together with a knowledge of the actual shape of the indenter. For this reason, nanoindentation testing is sometimes referred to as depth-sensing indentation testing. In this chapter, methods of the analysis of load-displacement data that are used to compute hardness and modulus of test specimens are presented in detail. It is an appropriate introduction to first consider the case of a cylindrical punch indenter — even though this type of indenter is rarely used for this type of testing, its response illustrates and introduces the theory for the more complicated cases of spherical and pyramidal indenters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Fischer-Cripps, Introduction to Contact Mechanics, Springer-Verlag, New York, 2000.

    Google Scholar 

  2. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and the elastic modulus during indentation,” J. Mater. Res. 7 3, 1992, pp. 613–617.

    Article  CAS  Google Scholar 

  3. M.F. Doemer and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 1 4, 1986, pp. 601–609.

    Article  Google Scholar 

  4. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 4, 1992, pp. 1564–1583.

    Article  CAS  Google Scholar 

  5. J.S. Field and M.V. Swain, “A simple predictive model for spherical indentation,” J. Mater. Res. 8 2, 1993, pp. 297–306.

    Article  CAS  Google Scholar 

  6. E.S. Berkovich, “Three-faceted diamond pyramid for micro-hardness testing,” Ind. Diamond Rev. 11 127, 1951, pp. 129–133.

    Google Scholar 

  7. I.N. Sneddon, “Boussinesq’s problem for a rigid cone,” Proc. Cambridge Philos. Soc. 44, 1948, pp. 492–507.

    Article  Google Scholar 

  8. J.Woirgard and J-C. Dargenton, “An alternative method for penetration depth determination in nanoindentation measurements,” J. Mater. Res. 12 9, 1997, pp. 24552458.

    Google Scholar 

  9. T. Sawa and K. Tanaka, “Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments,” J. Mater. Res. 16 11, 2001, pp. 3084–3096.

    Article  CAS  Google Scholar 

  10. A. Bolshakov and G.M. Pharr, “Understanding nanoindentation unloading curves,” J. Mater. Res. 17 10, 2002, pp. 2660–2671.

    Article  Google Scholar 

  11. R.B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Structures, 23 12, 1987, pp. 1657–1664.

    Article  Google Scholar 

  12. D.B. Marshall and B.R. Lawn, “Indentation of Brittle Materials,” Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, P.J. Blau and B.R. Lawn, Eds. American Society for Testing and Materials, Philadelphia, 1986, pp. 26–46.

    Google Scholar 

  13. L. Riester, T.J. Bell, and A.C. Fischer-Cripps, “Analysis of depth-sensing indentation tests with a Knoop indenter,” J. Mater. Res. 16 6, 2001, pp. 1660–1667.

    Article  CAS  Google Scholar 

  14. D.B. Marshall, T. Noma, and A.G. Evans, “A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements,” J. Am. Ceram. Soc. 65, 1980, pp. C175 - C176.

    Article  Google Scholar 

  15. I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, Int. J. Eng. Sci. 3, 1965, pp. 47–57.

    Article  Google Scholar 

  16. A.C. Fischer-Cripps, “Elastic recovery and reloading of hardness impressions with a conical indenter,” Mat. Res. Symp. Proc. 750, 2003, pp. Y6.9.1-Y6. 9. 6.

    Google Scholar 

  17. ISO 14577, “Metallic materials — Instrumented indentation test for hardness and materials parameters.” ISO Central Secretariat, 1 rue de Varembé, 1211 Geneva 20 Switzerland.

    Google Scholar 

  18. M.Kh. Shorshorov, S.I. Bulychev, and V.O. Alekhin, “Work of plastic and elastic deformation during indenter indentation,” Soy. Phys. Dokl. 26 8, 1981, pp. 769–771.

    Google Scholar 

  19. M. Sakai, “Energy principle of the indentation-induced inelastic surface deformation

    Google Scholar 

  20. and hardness of brittle materials,“ Acta. Metal. Mater. 41 6, 1993, pp. 1751–1758.

    Google Scholar 

  21. J B Quinn and G.D. Quinn, “Indentation brittleness: a fresh approach,” J. Mat. Sci.

    Google Scholar 

  22. pp. 4331–4346.

    Google Scholar 

  23. T.-Y. Zhang and W.-H. Xu, “Surface effects on nanoindentation,” J. Mater. Res. 17 7, 2002, pp. 1715–1720.

    Article  CAS  Google Scholar 

  24. B.N. Lucas, W.C. Oliver, and J.E. Swindeman, “The dynamics of frequency specific, depth sensing indentation testing,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 3–14.

    Article  CAS  Google Scholar 

  25. D. Lorenz, W. Fränzel, M. Einax, P. Grau, and G. Berg, “Determination of the elastic properties of glasses and polymers exploiting the resonant characteristic of depthsensing indentation tests,” J. Mater, Res. 16 6, 2001, pp. 1776–1783.

    Article  CAS  Google Scholar 

  26. D.L. Joslin and W.C. Oliver, “A new method for analyzing data from continuous depth-sensing microindentation tests,” J. Mater. Res. 5 1, 1990, pp. 123–126.

    Article  CAS  Google Scholar 

  27. S.V. Hainsworth, H.W. Chandler, and T.F. Page, “Analysis of nanoindentation load-displacement loading curves,” J. Mater. Res. 11 8, 1996, pp. 1987–1995.

    Article  CAS  Google Scholar 

  28. T.A. Venkatesh, K.J. Van Vliet, A.E. Giannakopolous, and S. Suresh, “Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction,” Scripta Mater. 42, 2000, pp. 833–839.

    Article  CAS  Google Scholar 

  29. W.W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, “Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations,” J. Mater. Res. 13 2, 1998, pp. 421–439.

    Article  CAS  Google Scholar 

  30. T.F. Page, G.M. Pharr, J.C. Hay, W.C. Oliver, B.N. Lucas, E. Herbert, and L. Ri-ester, “Nanoindentation characterization of coated systems: P:S2 — a new approach using the continuous stiffness technique,” Mat. Res. Symp. Proc. 522, 1998, pp. 5364.

    Google Scholar 

  31. D.S. Stone, “Elastic rebound between an indenter and a layered specimen: Part 1. Model,” J. Mater. Res. 13 11, 1998, pp. 3207–3213.

    Article  CAS  Google Scholar 

  32. K.B. Yoder, D.S. Stone, R.A. Hoffman, and J.C. Lin, “Elastic rebound between an indenter and a layered specimen: Part II. Using contact stiffness to help ensure reliability of nanoindentation measurements,” J. Mater. Res. 13 11, 1998, pp. 32143220.

    Google Scholar 

  33. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data,” J. Mater. Res. 16 11, 2001, pp. 3202–3206.

    Article  CAS  Google Scholar 

  34. J. Malzbender and G. de With, “Indentation load-displacement curve, plastic deformation, and energy,” J. Mater. Res. 17 2, 2002, pp. 502–511.

    Article  CAS  Google Scholar 

  35. M. Sakai and Y, Nakano, Nakano, “Elastoplastic load-depth hysteresis in pyramidal indentation,” J. Mater. Res. 17 8, 2002, pp. 2161–2173.

    Article  CAS  Google Scholar 

  36. K. Zeng and C.-h Chiu, “An analysis of load-penetration curves from instrumented indentation,” Acta Mater. 49, 2001, pp. 3539–3551.

    Article  CAS  Google Scholar 

  37. K. Zeng and L. Shen, “A new analysis of nanoindentation load-displacement curves,” Phil. Mag. A 82 10, 2002, pp. 2223–2229.

    Article  CAS  Google Scholar 

  38. N.X. Randall and C. Julia-Schmutz, “Evolution of contact area and pile-up during the nanoindentation of soft coatings on hard substrates,” Mat. Res. Symp. Proc. Vol. 522, 1998, pp. 21–26.

    Article  CAS  Google Scholar 

  39. N.X. Randall, “Direct measurement of residual contact area and volume during the nanoindentation of coated materials as an alternative method of calculating hardness,” Phil. Mag. A 82, 10, 2002, pp. 1883–1892.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2004). Analysis of Nanoindentation Test Data. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5943-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5943-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1962-5

  • Online ISBN: 978-1-4757-5943-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics