Prospects for Polarizing Solid DT

  • W. Heeringa
Part of the Ettore Majorana International Science Series book series (EMISS, volume 33)


The fusion cross section of light particles with energies in the keV region is determined by resonances: particle-unstable states in the compound nucleus. If one resonance dominates, as in the D-T case, a clear increase in fusion cross section can be achieved by the employment of properly aligned polarized particles. The employment of nuclear polarized fuel for nuclear fusion reactors has become a topic of interest since the paper of Kulsrud et al.,1 in which it was shown that in magnetically confined plasmas the polarization decay rate is probably smaller than the fusion rate. Several papers about the behaviour of polarized plasmas appeared since then; these proceedings contain a contribution by Pegoraro on this subject. Also in inertial confinement fusion it is estimated that the nuclear polarization is largely retained until fusion takes place.2,3


Rotational State Dynamic Nuclear Polarization Temperature Jump Nuclear Polarization Fusion Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Kuisrud, H.P. Furth, E.J. Valeo and M. Goldhaber, Fusion Reactor Plasmas with Polarized Nuclei, Phys. Rev. Lett. 49: 1248 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    R.M. More, Nuclear Spin-polarized Fuel in Inertial Fusion, Phys. Rev. Lett. 51: 396 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    B. Goel and W. Heeringa, Spin polarised ICF targets, in: “Emerging Nuclear Energy Systems”, G. Velarde and G. Minguez, ed., World Scientific, Singapore (1987).Google Scholar
  4. 4.
    M. Greenwald et al., Energy Confinement of High-density Pellet-fueled Plasmas in the Alcator C Tokamak, Phys. Rev. Lett. 53: 352 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    L.L. Lengyel, Ignition and Fuel Scenario Calculations for Neutral-beamheated Tokamak Reactors Based on Pellet Injection, Fusion Techn. 10: 354 (1986).Google Scholar
  6. 6.
    A. Abragam and M. Goldman, Principles of Dynamic Nuclear Polarisation, Rep. Prog. Phys. 41: 395 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    I.F. Silvera, The Solid Molecular Hydrogens in the Condensed Phase: Fundamentals and Static Properties, Rev. Mod. Phys. 52: 393 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    R.G. Bohn and C.F. Mate, Thermal Conductivity of Solid Hydrogen, Phys. Rev. B2: 2121 (1970).CrossRefGoogle Scholar
  9. 9.
    J.E. Huebler and R.G. Bohn, Thermal Conductivity of Solid Hydrogen with Ortho-hydrogen Concentrations between 20 and 70 at. %, Phys. Rev. B17: 1991 (1978).Google Scholar
  10. 10.
    J.H. Constable and J.R. Gaines, Low-temperature Heat Transport in Solid HD, Phys. Rev. B8: 3966 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    R. Aures, W. Heeringa, H.O. Klages, R. Maschuw, F.K. Schmidt and B. Zeitnitz, A Brute-force Polarised Proton Target as an Application of a Versatile Brute-force Polarisation Facility, Nucl. Instrum. and Methods 224: 347 (1984).CrossRefGoogle Scholar
  12. 12.
    W. Meyer, Review of Operational Polarized Targets, Helv. Phys. Acta 59: 728 (1986).Google Scholar
  13. 13.
    W. Bouffard, Y. Roinel, P. Roubeau, A. Abragam, Dynamic Nuclear Polarization in 6LiD, J. Phys. Paris 41: 1447 (1980).Google Scholar
  14. 14.
    M. Krumpolc, B.G. DeBoer and J. Rocek, A Stable Chromium (V) Compound, J. Am. Chem. Soc. 100: 145 (1978).CrossRefGoogle Scholar
  15. 15.
    T.O. Niinikoski and J.M. Rieubland, Dynamic Nuclear Polarization in Irradiated Ammonia Below 0.5 K, Phys. Lett. 72A: 141 (1979).CrossRefGoogle Scholar
  16. 16.
    H.M. Bozler, J.A. Brown and E.H. Graf, Proton Resonance in Highly Polarized Hydrogen Deuteride, Bull. Am. Phys. Soc. 18: 545 (1973).Google Scholar
  17. 17.
    H. Mano and A. Honig, Resistance of Solid HD Polarized Proton Targets to Damage from High-energy Proton and Electron Beams, Nucl. Instrum. and Methods 124: 1 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Solem, Dynamic Polarization of Protons and Deuterons in Solid Deuterium Hydride, Nucl. Instrum. and Methods 117: 477 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Rebka and M. Waine, Dynamic Orientation of the Nuclei of Solid Deuterium, Bull. Am. Phys. Soc. 7: 538 (1962).Google Scholar
  20. 20.
    G.A. Rebka and J.C. Solem, Dynamic Polarization of Nuclei in Solid Deuterium Hydride, Bull. Am. Phys. Soc. 12: 1064 (1967).Google Scholar
  21. 21.
    M. Sharnoff and R.V. Pound, Magnetic Resonance Studies of Unpaired Atoms in Solid D2, Phys. Rev. 132: 1003 (1963).CrossRefGoogle Scholar
  22. 22.
    T.O. Niinikoski, Dilution Refrigerator for a Two-litre Polarized Target, Nucl. Instrum. and Methods 192: 151 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    R. Fröhlich, B. Goel, D.L. Henderson, W. Höbel, K.A. Long and N.A. Tahir, Heavy Ion Beam Driven Inertial Confinement Fusion Target Studies and Reactor Chamber Neutronic Analysis, Nucl. Eng. and Design 73: 201 (1982).CrossRefGoogle Scholar
  24. 24.
    O.V. Lounasmaa, “Experimental Principles and Methods Below 1 K”, Academic Press, London (1974).Google Scholar
  25. 25.
    M. Bloom, Nuclear Spin Relaxation in Hydrogen, Physica (Utrecht) 23: 767 (1957).ADSCrossRefGoogle Scholar
  26. 26.
    M. Kaufmann, Review on Pellet Fuelling, Plasma Phys. 28: 1341 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • W. Heeringa
    • 1
  1. 1.Institut für Kernphysik IKernforschungszentrum KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations