The Bax-/-Bak-/- Mouse: a Model for Apoptosis

  • Wei-Xing Zong
  • Jeffrey C. Rathmell
  • Jeffrey A. Golden
  • Tullia Lindsten


The bax -/- bak -/- double-deficient mouse has provided a unique tool to study apoptosis. These mice display severe defects in both developmental apoptosis and regulation of tissue homeostasis. Developmental defects include persistent interdigital webs in the adult mouse. A defect in tissue homeostasis is illustrated in the hematopoietic system where lymphocytosis, enlarged lymphoid organs and lymphocytic infiltration in parenchymal organs is seen. In addition, defects in thymocyte development, negative selection and T cell homeostasis is seen. The central nervous system of the bak -/- bak -/- mice show an excess of cells in areas where neural progenitor cells are known to reside. Primary cells as well as cell lines derived from the bax -/- bax -/- mouse display resistance to a multitude of apoptotic stimuli and has helped to provide a model for the regulation of the cell intrinsic apoptotic pathway.


Negative Selection Neural Progenitor Cell Apoptotic Stimulus Bone Marrow Chimera Growth Factor Withdrawal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., and Korsmeyer, S. J. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8, 705–711.PubMedCrossRefGoogle Scholar
  2. Degenhardt, K., Sundararajan, R., Lindsten, T., Thompson, C., and White, E. (2002). Bax and Bak independently promote cytochrome C release from mitochondria. J Biol Chem 277, 14127–14134.PubMedCrossRefGoogle Scholar
  3. Dijkers, R F., Medema, R. H., Lammers, J. W., Koenderman, L., and Coffer, R J. (2000). Expression of the proapoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-Ll. Curr Biol 10, 1201–1204.PubMedCrossRefGoogle Scholar
  4. Green, D. R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4.Google Scholar
  5. Han, J., Flemington, C., Houghton, A. B., Gu, Z., Zambetti, G. P., Lutz, R. J., Zhu, L., and Chittenden, T. (2001). Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A 98, 11318–11323.PubMedCrossRefGoogle Scholar
  6. Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A., and Korsmeyer, S. J. (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99.PubMedCrossRefGoogle Scholar
  7. Lei, K., Nimnual, A., Zong, W. X., Kennedy, N. J., Flavell, R. A., Thompson, C. B., Bar-Sagi, D., and Davis, R. J. (2002). The Bax subfamily of Bc12-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Bio122, 4929–4942.Google Scholar
  8. Letai, A., Bassik, M. C., Walensky, L. D., M.D., S., Wiler, S., and Korsmeyer, S. K. (2002). Distinct BH3 domains either senitize or activate mitochondrial apoptosis serving as prototype cancer therapeutics. Cancer Cell 2, 183–192.PubMedGoogle Scholar
  9. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.PubMedCrossRefGoogle Scholar
  10. Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., Ulrich, E., Waymire, K. G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic BcI-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389–1399.PubMedCrossRefGoogle Scholar
  11. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bc12 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.PubMedCrossRefGoogle Scholar
  12. McClintock, D. S., Santore, M. T., Lee, V. Y., Brunelle, J., Budinger, G. R., Zong, W. X., Thompson, C. B., Hay, N., and Chandel, N. S. (2002). Bc1–2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol 22, 94–104.PubMedCrossRefGoogle Scholar
  13. Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K., Negishi, I., Senju, S., Zhang, Q., Fujii, S., and et al. (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510.Google Scholar
  14. Nakano, K., and Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683–694.PubMedCrossRefGoogle Scholar
  15. Nakayama, K., Negishi, I., Kuida, K., Shinkai, Y., Louie, M. C., Fields, L. E., Lucas, P. J., Stewart, V., Alt, F. W., and et al. (1993). Disappearance of the lymphoid system in Bc1–2 homozygous mutant chimeric mice. Science 261, 1584–1588.PubMedCrossRefGoogle Scholar
  16. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000). Noxa, a BH3-only member of the Bc1–2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058.PubMedCrossRefGoogle Scholar
  17. Puthalakath, H., Huang, D. C., O’Reilly, L. A., King, S. M., and Strasser, A. (1999). The proapoptotic activity of the Bc1–2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3, 287–296.PubMedCrossRefGoogle Scholar
  18. Puthalakath, H., Villunger, A., O’Reilly, L. A., Beaumont, J. G., Coultas, L., Cheney, R. E., Huang, D. C., and Strasser, A. (2001). Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293, 1829–1832.PubMedCrossRefGoogle Scholar
  19. Rathmell, J. C., Lindsten, T., Zong, W.-X., Cinalli, R. M., and Thompson, C. B. (2002). Deficiency in Bak and Bax perturbs thymic selection and lympoid homeostasis. Nature Immunology 3, 932–939.PubMedCrossRefGoogle Scholar
  20. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998). Two CD95 (APO-l/Fas) signaling pathways. Embo J 17, 1675–1687.Google Scholar
  21. Shinjyo, T., Kuribara, R., Inukai, T., Hosoi, H., Kinoshita, T., Miyajima, A., Houghton, P. J., Look, A. T., Ozawa, K., and Inaba, T. (2001). Downregulation of Bim, a proapoptotic relative of Bc1–2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. Mol Cell Bio121, 854–864.Google Scholar
  22. Strasser, A., Harris, A. W., Huang, D. C., Krammer, P. H., and Cory, S. (1995). Bc1–2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. Embo J 14, 6136–6147.PubMedGoogle Scholar
  23. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.PubMedCrossRefGoogle Scholar
  24. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W., and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7, 673–682.PubMedCrossRefGoogle Scholar
  25. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R., and Thompson, C. B. (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 1481–1486.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Wei-Xing Zong
  • Jeffrey C. Rathmell
  • Jeffrey A. Golden
  • Tullia Lindsten
    • 1
  1. 1.Departments of Pathology and Laboratory Medicine, Cancer Biology, Abramson Family Cancer Research InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations