Oxidative Stress and Thymocyte Apoptosis

  • Noriko Tonomura
  • Richard A. Goldsby
  • Eric V. Granowitz
  • Barbara Osborne


Mitochondria play a major role in making decisions in programmed cell death. During thymocyte apoptosis, the function of mitochondrial electron transport chain becomes pro-apoptotic and produces increased levels of reactive oxygen species (ROS). The resulting oxidative stress can further aggravate apoptotic events, leading thymocytes to death. The site of ROS production during thymocyte apoptosis is most likely at complex III of the electron transport chain, and the pro-apoptotic function of electron transport chain is regulated by the proteasome.


Electron Transport Chain Proteasome Activity Mitochondrial Electron Transport Chain Mitochondrial Membrane Permeabilization Cell Death Differ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boveris, A., and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134, 707–716.PubMedGoogle Scholar
  2. Braun, R. D., Lanzen, J. L., Snyder, S. A., and Dewhirst, M. W. (2001). Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 280, H2533–2544.PubMedGoogle Scholar
  3. Dimmeler, S., Breitschopf, K., Haendeler, J., and Zeiher, A. M. (1999). Dephosphorylation targets BcI-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189, 1815–1822.PubMedCrossRefGoogle Scholar
  4. Finkel, T., and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247. Ferri, K. F., and Kroemer, G. (2001). Mitochondria—the suicide organelles. Bioessays 23, 111–115.Google Scholar
  5. Green, D. R., and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309–1312.PubMedCrossRefGoogle Scholar
  6. Grimm, L. M., Goldberg, A. L., Poirier, G. G., Schwartz, L. M., and Osborne, B. A. (1996). Proteasomes play an essential role in thymocyte apoptosis. Emba J 15, 3835–3844.Google Scholar
  7. Grimm, L. M., and Osborne, B. A. (1999). Apoptosis and the proteasome. Results Probl Cell Differ 23, 209–228.PubMedGoogle Scholar
  8. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev /3, 1899–1911.Google Scholar
  9. Hale, L. P., Braun, R. D., Gwinn, W. M., Greer, P. K., and Dewhirst, M. W. (2002). Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am J Physiol Heart Circ Physiol 282, H1467–1477.PubMedGoogle Scholar
  10. Harris, M. H., and Thompson, C. B. (2000). The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7, 1182–1191.PubMedCrossRefGoogle Scholar
  11. Hatefi, Y. (1985). The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54, 1015–1069.PubMedCrossRefGoogle Scholar
  12. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J. (1993). Bc1–2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251.PubMedCrossRefGoogle Scholar
  13. Hug, H., Enari, M., and Nagata, S. (1994). No requirement of reactive oxygen intermediates in Fas-mediated apoptosis. FEBS Lett 351, 311–313.PubMedCrossRefGoogle Scholar
  14. Klebanoff, S. J. (1980). Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93, 480–489.PubMedCrossRefGoogle Scholar
  15. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136.PubMedCrossRefGoogle Scholar
  16. Korshunov, S. S., Krasnikov, B. F., Pereverzev, M. O., and Skulachev, V. P. (1999). The antioxidant functions of cytochrome c. FEBS Lett 462, 192–198.PubMedCrossRefGoogle Scholar
  17. Kroemer, G., Dallaporta, B., and Resche-Rigon, M. (1998). The mitochondria] death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60, 619–642.PubMedCrossRefGoogle Scholar
  18. Kroemer, G., and Reed, J. C. (2000). Mitochondrial control of cell death. Nat Med 6, 513–519.PubMedCrossRefGoogle Scholar
  19. Li, B., and Dou, Q. P. (2000). Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 97, 3850–3855.PubMedCrossRefGoogle Scholar
  20. Macho, A., Hirsch, T., Marzo, I., Marchetti, P., Dallaporta, B., Susin, S. A., Zamzami, N., and Kroemer, G. (1997). Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158, 4612–4619.PubMedGoogle Scholar
  21. Mannella, C. A., Forte, M., and Colombini, M. (1992). Toward the molecular structure of the mitochondrial channel, VDAC. J Bioenerg Biomembr 24, 7–19.PubMedCrossRefGoogle Scholar
  22. Marshansky, V., Wang, X., Bertrand, R., Luo, H., Duguid, W., Chinnadurai, G., Kanaan, N., Vu, M. D., and Wu, J. (2001). Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol 166, 3130–3142.PubMedGoogle Scholar
  23. Matsuyama, S., and Reed, J. C. (2000). Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7, 1155–1165.PubMedCrossRefGoogle Scholar
  24. McLaughlin, K. A., Osborne, B. A., and Goldsby, R. A. (1996). The role of oxygen in thymocyte apoptosis. Eur J Immunol 26, 1170–1174.PubMedCrossRefGoogle Scholar
  25. Patterson, S. D., Spahr, C. S., Daugas, E., Susin, S. A., Irinopoulou, T., Koehler, C., and Kroemer, G. (2000). Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 7, 137–144.PubMedCrossRefGoogle Scholar
  26. Ramakrishnan, N., Chen, R., McClain, D. E., and Bunger, R. (1998). Pyruvate prevents hydrogen peroxide-induced apoptosis. Free Radic Res 29, 283–295.PubMedCrossRefGoogle Scholar
  27. Schleiff, E. (2000). Signals and receptors-the translocation machinery on the mitochondrial surface. J Bioenerg Biomembr 32, 55–66.PubMedCrossRefGoogle Scholar
  28. Sidoti-de Fraisse, C., Rincheval, V., Risler, Y., Mignotte, B., and Vayssiere, J. L. (1998). TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17, 1639–1651.CrossRefGoogle Scholar
  29. Skulachev, V. P. (1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423, 275–280. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299.Google Scholar
  30. Tome, M. E., Baker, A. F., Powis, G., Payne, C. M., and Briehl, M. M. (2001). Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res 61, 2766–2773.PubMedGoogle Scholar
  31. Tome, M. E., and Briehl, M. M. (2001). Thymocytes selected for resistance to hydrogen peroxide show altered antioxidant enzyme profiles and resistance to dexamethasone-induced apoptosis. Cell Death Differ 8, 953–961.PubMedCrossRefGoogle Scholar
  32. Torres-Roca, J. F., Tung, J. W., Greenwald, D. R., Brown, J. M., Herzenberg, L. A., and Katsikis, P. D. (2000). An early oxygen-dependent step is required for dexamethasone-induced apoptosis of immature mouse thymocytes. J Immunol 165, 4822–4830.PubMedGoogle Scholar
  33. Tsujimoto, Y., and Shimizu, S. (2000). VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7, 1174–1181.PubMedCrossRefGoogle Scholar
  34. Vander Heiden, M. G., and Thompson, C. B. (1999). Bc1–2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1, E209–216.CrossRefGoogle Scholar
  35. Vieira, H. L., Haouzi, D., El Hamel, C., Jacotot, E., Belzacq, A. S., Brenner, C., and Kroemer, G. (2000). Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7, 1146–1154.PubMedCrossRefGoogle Scholar
  36. Von Ahsen, O., Waterhouse, N. J., Kuwana, T., Newmeyer, D. D., and Green, D. R. (2000). The `harmless’ release of cytochrome c. Cell Death Differ 7, 1192–1199.CrossRefGoogle Scholar
  37. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129 1132.Google Scholar
  38. Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S. A., Petit, P. X., Mignotte, B., and Kroemer, G. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182, 367–377.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Noriko Tonomura
    • 1
    • 2
  • Richard A. Goldsby
    • 3
  • Eric V. Granowitz
    • 4
    • 5
  • Barbara Osborne
    • 1
    • 2
  1. 1.Transplantation Biology Research CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.The Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherstUSA
  3. 3.Department of BiologyAmherst CollegeAmherstUSA
  4. 4.Department of MedicineBaystate Medical CenterSpringfieldUSA
  5. 5.Tufts University School of MedicineBostonUSA

Personalised recommendations