Apoptosis, Cancer, and Cancer Therapy

Chapter

Abstract

Apoptosis is a complex process involving a large array of genes and mutation of any of these genes may lead to malignancy formation. Tumor cells may actively evade the immune surveillance by actively inducing the apoptosis of effector lymphocytes, facilitating mass formation and metastasis. Apart from traditional therapies inducing tumor cell apoptosis, new strategies employing death receptor ligands and making use of tumor counterattack are also being developed.

Keywords

Death Receptor Death Domain Isolate Limb Perfusion FasL Expression Death Receptor Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron C. Spalding, Robert M. Jotte, Robert I. Scheinman, Mark W. Geraci, Penny Clarke, Kenneth L. Tyler and Gary L. Johnson. (2002). TRAIL and inhibitors of apoptosis are opposing determinants for NF-kB-dependent, genotoxin-induced apoptosis of cancer cells. Oncogene. 21, 260 - 271.PubMedCrossRefGoogle Scholar
  2. Abigail Hunt and Gerard Evan. (2001). Apoptosis: Till Death Us Do Part, Science. 293, 1784 - 5.PubMedCrossRefGoogle Scholar
  3. Alexandre Nesterov, Yuri Ivashchenko, and Andrew S. Kraft (2002). Tumor necrosis factor-related apoptosisinducing ligand ( TRAIL) triggers apoptosis in normal prostate epithelial cells. Oncogene. 21, 1135-1140.Google Scholar
  4. Antonsson, B., and Martinou, J.C. (2000). The Bc1-2 protein family. Exp Cell Res. 256, 50 - 57.PubMedCrossRefGoogle Scholar
  5. Asher, G., Lotem, J., Cohen, B., and Shaul, Y. (2000). Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci USA. 98, 1188 - 1193.CrossRefGoogle Scholar
  6. Beutler, B. and Cerami, A. (1986). Cachetin and tumor necrosis factor as two sides of the same biological coin. Nature. 320, 584 - 588.PubMedCrossRefGoogle Scholar
  7. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/ FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Celi. 85, 803 - 15.Google Scholar
  8. Borner, C., and Monney, L. (1999). Apoptosis without cas-pases: an inefficient molecular guillotine? Cell Death Diff. 6, 497 - 507.CrossRefGoogle Scholar
  9. Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N., and Williamson, B. (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA. 72, 3666-3670.Google Scholar
  10. Chautan, M., Chazal, G., Cecconi, F., Gruss, P., and Golstein, P. (1999). Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol. 9, 967 - 970.PubMedCrossRefGoogle Scholar
  11. Cryns, V., and Yuan, J. (1998). Proteases to die for. Genes Dev. 12, 1551 - 70.PubMedCrossRefGoogle Scholar
  12. Daniel, P. (2000). Dissecting the pathways to death. Leukemia. 14, 2035 - 2044.PubMedCrossRefGoogle Scholar
  13. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 391, 43 - 50.PubMedCrossRefGoogle Scholar
  14. Eskes, R. Desagher, S. Antonsson, B. and Martinou, J. (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial mebrane. Mol. Cell. Biol. 20, 929 - 935.Google Scholar
  15. Fan Xiaoqiang, and Yajun Guo. (2001). Apoptosis in oncology, Cell Research. 11, 1 - 7.CrossRefGoogle Scholar
  16. Fraker, D.L. and Alexander, H.R. (1994). Isolated limb perfusion with high-dose tumor necrosis factor for extremity melanoma and sarcoma., Important adv. Oncol. 179 - 192.Google Scholar
  17. Frederik H. Igney, Christian K. Behrens and Peter H. Krammer. (2000). Tumor counterattack-concept and reality. Eur. J. Immunol. 30, 725-731.Google Scholar
  18. Gao, G., and Dou, P. (2000). N-terminal cleavage of bax by cal-pain generates a potent proapoptotic 18-kDa fragment that promotes Bcl-2-independent cyto-chrome c release and apoptotic cell death. J Cell Biochem. 80, 53 - 72.PubMedCrossRefGoogle Scholar
  19. Gen Sheng Wu and Zhenhua Ding. (2002). Caspase 9 is required for p53-dependent apoptosis and chemosensitivity in a human ovarian cancer cell line. Oncogene. 21, 1 - 8.CrossRefGoogle Scholar
  20. Gordon J. Freeman, Arlene H. Sharpe and Vijay K. Kuchroo. (2002). Protect the killer: CTLs need defences against the tumor. Nat. Med. 8, 787 - 789.PubMedCrossRefGoogle Scholar
  21. Guo, B., Godzik, A., and Reed, J.C. (2001). Bel-G, a novel pro-apoptotic member of the Bc1-2 family. J Biol Chem. 276, 2780 - 2785.PubMedCrossRefGoogle Scholar
  22. Guoqing Chen and David V. Goeddel (2002). TNFRI signalling: a beautiful pathway, Science, 296, 1634 - 1635.PubMedCrossRefGoogle Scholar
  23. HaidongDong, Scoot E. Strome, Diva R. Salomao, Hideto Tamura, Fumiya Hirano, Dallas B. Flies, Patrick C. Roche, Jun Lu, Gefeng Zhu, Koji Tamada, Vanda A. Lennon, Esteban Celis, and Lieping Chen. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion, Nature Medicine. 8, 793 - 800.PubMedCrossRefGoogle Scholar
  24. Heidi Leblance, David Lawrence, Eugene Varfolomeev, Klara Totpal, John Morlan, Peter Schow, Sharon Fong, Ralph Schwall, Dominick Sinicropi and Avi Ashkenzi. (2002). Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med. 8, 274 - 281.CrossRefGoogle Scholar
  25. Hermeking, H., and Eick, D. (1994). Mediation of c-Myc induced apoptosis by p53. Science. 265, 2091-2093. Hiroshi Arai, David Gordon, Elizabeth G. Nabel, and Gary J. Nabel. (1997). G.ne transfer of Fas ligand induces tumor regression in vivo, Proc. Natl. Acad. Sci. USA. 94, 13862 - 13867.Google Scholar
  26. Howard Y. Chang and Xiaolu Yang (2000). Proteases for Cell Suicide: Functions and Regulation of Caspases. Micro Mol Biol Rev. 64, 821 - 846.CrossRefGoogle Scholar
  27. Hsu, H., Xiong, J., and Goeddel, D.V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 81, 495 - 504.PubMedCrossRefGoogle Scholar
  28. Jo, M., Kim, T.H., Seol, D.W., Esplen, J.E., Dorko, K., Billiar, T.R., and Strom, S.C. (2000). Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat. Med. 6, 564-567.Google Scholar
  29. Joe O’Connell, Michael W. Bennett, Gerald C., O’Sullivan, J. Kevin Collins and Fergus Shanahan. (1999). Fas counterattack-the best form of tumor defense ? Nat. Med. 5, 267 - 268.PubMedCrossRefGoogle Scholar
  30. Kataoka, T., Budd, R.C., Holler, N., Thome, M., Martinon, F., Irmler, M., Burns, K., Hahne, M., Kennedy, N., Kovacsovics, M., and Tschopp, J. (2000). The caspase inhibitor FLIP promotes activation of NF-KB and Erk signaling pathways. Curr. Biol, 10, 640 - 648.PubMedCrossRefGoogle Scholar
  31. Ke, N., Godzik, A., and Reed, J.C. (2001). Bel-B, a novel Bel-2 family member that differentially binds and regu-lates Bax and Bak. J Biol Chem. 276, 12481 - 12484.PubMedCrossRefGoogle Scholar
  32. Keane, M.M., Ettenberg, S.A., Nau, M.M., Russell, E.K., and Lipkowitz, S. (1999). Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. 59, 734 - 41.PubMedGoogle Scholar
  33. Kelly, M.M., Hoel, B.D., and Voelkel Johnson C. (2002). Doxorubicin Pretreatment Sensitizes Prostate Cancer Cell Lines to TRAIL Induced Apoptosis Which Correlates with the Loss of c-FLIP Expression. Cancer Biol. Ther. 1, 520 - 7.Google Scholar
  34. Kitanaka, C., and Kuchino, Y. (1999). Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 6, 508 - 515.PubMedCrossRefGoogle Scholar
  35. Krammer, P.H. (2000). CD95’s deadly mission in the immune system. Nature. 407, 789 - 795.PubMedCrossRefGoogle Scholar
  36. Li, X.K., Okuyama, T., Tamura, A., Enosawa, S., Kaneda, Y., Takahara, S., Funashima, N., Yamada, M., Amemiya, H., and Suzuki, S. (1998). Prolonged survival of rat liver allografts transfected with Fas ligand-expressing plasmid. Transplantation. 66, 1416 - 1423.PubMedCrossRefGoogle Scholar
  37. Liu, T.J., el-Naggar, A.K., McDonnell, T.J., Steck, K.D., Wang, M., Taylor, D.L., and Clayman, G.L. (1995). Apoptosis induction mediated by wild type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck. Cancer Res. 55, 3117 - 22.PubMedGoogle Scholar
  38. Miller, T.M., Moulder, K.L., Knudson, C.M., Creedon, D.J., Deshmukh, M., Korsmeyer, S.J., and Johnson, E.M. Jr. (1997). Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspaseindependent pathway to cell death. J Cell Biol. 139, 205 - 217.PubMedCrossRefGoogle Scholar
  39. Xiang, J., Chao, D.T., and Korsmeyer, S.J. (1996). Bax-induced cell death may not require interleukin 1-convert-ing enzyme-like proteases. Proc Natl Acad Sci USA. 93, 14559 - 14563.PubMedCrossRefGoogle Scholar
  40. Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S., and Dixit, V.M. (1998). An induced proximity model for caspase-8 activation. J Biol Chem. 273, 2926 - 30.PubMedCrossRefGoogle Scholar
  41. Nicholas P. Restifo. (2000). Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nat. Med. 6, 493 - 5.PubMedCrossRefGoogle Scholar
  42. Norbury, C., and Hickson, I. (2001). Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 41, 367 - 401.PubMedCrossRefGoogle Scholar
  43. O’Conell, J., Bennett. M.W., O’Sullivan G.C., Collin. J.K., and Shanahan F. (1999). The Fas counterattack: cancer as a site of immune privilege. Immunol. Today. 20, 46 - 52.Google Scholar
  44. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000). Noxa, a BH3-only member of the Bd-2 family and candidate mediator of p53-induced apoptosis. Science. 288, 1053 - 1058.PubMedCrossRefGoogle Scholar
  45. Porwit MacDonald, A., Ivory, K., Wilkinson, S., Wheatley, K., Wong, L., and Janossy, G. (1995). Bc1-2 protein expression in normal human bone marrow precursors and in acute myelogenous leukemia. Leukemia. 9, 1191 - 8.Google Scholar
  46. Reddy, R.K., Jun, L., and Lee, A.S. (1999). The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca21-binding and antiapoptotic properties is a novel proteolytic target of calpain during etopo-side induced apoptosis. J Biol Chem. 274, 28476 - 28483.PubMedCrossRefGoogle Scholar
  47. Pitti, R.M., Marsters, S.A., Ruppert, S., Donahue, C.J., Moore, A., and Ashkenazi, A. (1996). Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. J. Biol. Chem, 271, 12687 - 12690.PubMedCrossRefGoogle Scholar
  48. Rudel, T., and Bokoch, G.M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 276, 1571 - 4.PubMedCrossRefGoogle Scholar
  49. Salvesen, G.S., and Dixit, V.M. (1999). Caspase activation: the induced proximity model. Proc. Natl. Acad. Sci. USA. 96, 10964-10967.Google Scholar
  50. Scaffidi, C. et al. (1999). Differential modulation of apoptosis sensitivity in CD95 type 1 and type 2 cells. J. Biol. Chem. 274, 22532 - 22538.PubMedCrossRefGoogle Scholar
  51. Schendel, S.L., Azimov, R., Pawlowski, K., Godzik, A., Kagan, B., and Reed, J.C. (1999). Ion channel activity of the BH3 only Bel-2 family member Bid. J Biol Chem. 274, 21932 - 21936.PubMedCrossRefGoogle Scholar
  52. Sharad Kumar and David L. Vaux. (2002). A Cinderella Caspase Takes Center Stage. Science. 297, 1290 - 1.PubMedCrossRefGoogle Scholar
  53. Shkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science. 281, 1305-1308. Simone Fulda and Klaus-Michael Debatin. (2002). IFN g sensitizes for apoptosis by upregulating caspase-8 expression through the Statl pathway Oncogene. 21, 2295 - 2308.Google Scholar
  54. Schulze Osthoff, K., Krammer, P.H., and Droege, W. (1994). Divergent signaling via APO-1/Fas and the TNF re-ceptor, two homologous molecules involved in physiological cell death. EMBO J. 13, 4587 - 4596.Google Scholar
  55. Simone Fulda, Wolfgang Wick, Michael Weller and Klaus. Michael Debatin. (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo Nat. Med. 8, 808 - 815.PubMedGoogle Scholar
  56. Srinivasula, S.M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri, E.S. (1998). Autoactivation of procaspase-9 by Apaf-l-mediated oligomerization. Mol Cell. 1, 949 - 57.PubMedCrossRefGoogle Scholar
  57. Stoka, V., Turk, B., Schendel, S.L., et al. (2001). Lysosomal protease pathways to apoptosis. J Biol Chem. 276, 3149 - 3157.PubMedCrossRefGoogle Scholar
  58. Tang, D., Lahti, J.M., and Kidd, V. (2000). Caspase-8 activation and bid cleavage contributes to MCF7 cellular execution in a casapse-3-dependent manner dur-ing staurosporine-mediated apoptosis. J Biol Chem. 275, 9303 - 9307.PubMedCrossRefGoogle Scholar
  59. Wim Van Molle, Ben Wielockx, Tina Mahieu, Masuhiro Takada, Takahide Taniguchi, Kenji Sekikawa, and Claude Liber (2002). Immunity, 16, 685 - 695.PubMedCrossRefGoogle Scholar
  60. Varnes, M.E., Chiu, S.M., Xue, L.Y., and Oleinick, N.L. (1999). Photodymic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation. Biochem. Biophys. Res. Column. 255, 673 - 9.CrossRefGoogle Scholar
  61. Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W., and Vandenabeele, P. (1998). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necro-sis factor. J Exp Med. 187, 1477 - 1485.PubMedCrossRefGoogle Scholar
  62. Wei, M.C., Lindsten, T., Mootha, V.K., Weiler, S., Gross, A., Ashiya, M., Thompson, C.B., and Korsmeyer, S.J. (2000). tBid, a membrane targeted cell death ligand, oligoerizes Bak to release cytochrome c. Genes Dev. 14, 2060 - 2071.Google Scholar
  63. Wolf, B.B., Goldstein, J.C., Stennicke, H.R., Beere, H., Amarante-Mendes, G.P., Salvesen, G.S., and Green, D.R. (1999). Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood. 94, 1683 - 1692.PubMedGoogle Scholar
  64. Wood, D.E., Thomas, A., Devi, L.A., Berman, Y., Beavis, R.C., Reed, J.C., and Newcomb, E.W. (1998). Box cleavage is mediated by calpain during drug-induced apoptosis. Oncogene. 17, 1096 - 1078.CrossRefGoogle Scholar
  65. Zamzami, N., El Hamel, C., Maisse, C., Brenner, C., Munoz-Pinedo, C., Belzacq, A.S., Costantini, P., Vieira, H., Loeffler, M., Molle, G., and Kroemer, G. (2000). Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene. 19, 6342 - 635.PubMedCrossRefGoogle Scholar
  66. Zamzami, N., Susin, S.A., Marchetti, P., Hirsch, T., Gemez-Monterrey, I., Castedo, M., and Kroemer, G. (1996). Mitochondrial control of nuclear apoptosis. J Exp Med. 183, 1533 - 44.PubMedCrossRefGoogle Scholar
  67. Zeytun, A., Hassuneh, M., Nagarkatti, M., and Nagarkatti, P. (1997). Fas-Fas ligand-based interactions between tumor cells and tumor-specific cytotoxic T lymphocytes: a lethal two-way street. Blood 90, 1952 - 1959.PubMedGoogle Scholar
  68. Zhan, Q., Fan, S., Bae, I., Guillouf, C., Liebermann, D.A., O’Connor, P.M., and Fornace, A.J. Jr. (1994). Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene. 9, 3743 - 3751.PubMedGoogle Scholar
  69. Zhang, H., Xu, Q., Krajewski, S., Krajewska, M., Xie, Z., Fuess, S., Kitada, S., Godzik, A., and Reed, J.C. (2000). BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA. 97, 2597 - 2602.PubMedCrossRefGoogle Scholar
  70. Zhang, Y., Yu, J., Unni, E., Shao, T.C., Nan, B., Snabboon, T., Kasper, S., Andriani, F., Denner, L., and Marcelli, M. (2002). Monogene and Polygene Therapy for the Treatment of Experimental Prostate Cancers by Use of Apoptotic Genes bax and bad Driven by the Prostate-Specific Promoter ARR(2)PB. Hum Gene Ther. 13, 2051 - 64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Xiao Qiang Fan
  • Hao Wang
  • Weizhu Qian
  • Yajun Guo
    • 1
    • 2
  1. 1.International Joint Cancer InstituteThe Second Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Epply Cancer InstituteUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations