Novel Transcriptional Regulatory Pathways of IL-3-Dependent Survival Responses

  • Jeffrey J. Y. Yen
  • Yung-Luen Yu
  • Wannhsin Chen
  • Yun-Jung Chiang
Chapter

Abstract

In the past several years, we devoted in the identification of cellular transcriptional factors that could recognize the CES2/E2A-HLF binding element (CBE) and were involved in apoptotic regulation. We firstly demonstrated the existence of multiple binding complexes of CBE in various cell types and tissues, and identified cAMP-responsive element binding protein (CREB) as a component in one major CBE-complex of hematopoietic cell lines. Stimulation of hematopoietic cells with IL-3 promptly induced phosphorylation of CREB at serine 133 partially via a PKA-dependent pathway. Alteration of function of PKA or CREB strongly correlated with the survival capacity of hematopoietic cells. Secondly, we explored the IL-3-dependent transactivation mechanism of another CBE-binding protein, E4BP4. We demonstrated that E4bp4 was regulated by IL-3 mainly at the transcriptional level. Promoter mapping and binding analyses revealed that GATA-1 and GATA-2 proteins were responsible for E4bp4 transcription via a conserved GATA site. Functional assays also suggested that GATA-1 not only modulated the expression of the E4bp4 gene but also controlled apoptosis. The discovery of involvement of CREB and GATA transcriptional factors in IL-3’s survival responses extends our knowledge on the anti-apoptotic pathways in hematopoietic cells and may contribute to our further understanding of the process of hematopoiesis and leukemogenesis.

Keywords

Hematopoietic Cell Electrophoretic Mobility Shift Assay Survival Response Antiapoptotic Activity BalF3 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sulston, J.E., and Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156.Google Scholar
  2. 2.
    Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119.Google Scholar
  3. 3.
    Ellis, H.M., and Horvitz, H.R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell. 44, 817–829.Google Scholar
  4. 4.
    Ellis, R.E.; and Horvitz, H.R. (1991). Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591–603.PubMedGoogle Scholar
  5. 5.
    Trent, C., Tsuing, N., and Horvitz, H.R. (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104, 619–647.PubMedGoogle Scholar
  6. 6.
    Metzstein, M.M., Hengartner, M.O., Tsung, N., Ellis, R.E., and Horvitz, H.R. (1996). Transcriptional regulator of programmed cell death encoded by Caenorhabditiselegans gene ces-2. Nature 382, 545–547.PubMedCrossRefGoogle Scholar
  7. 7.
    Hunger, S.P., Ohyashiki, K., Toyama, K., and Cleary, M.L. (1992). Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev. 6, 1608–1620.PubMedCrossRefGoogle Scholar
  8. 8.
    Inaba, T., Roberts, W.M., Shapiro, L.H., Jolly, K.W., Raimondi, S.C., Smith, S.D., and Look, A.T. (1992). Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257, 531–534.PubMedCrossRefGoogle Scholar
  9. 9.
    Inaba, T., Shapiro, L.H., Funabiki, T., Sinclair, A.E., Jones, B.G., Ashmun, R.A., and Look, A.T. (1994). DNA-binding specificity and trans-activating potential of the leukemia-associated E2A-hepatic leukemia factor fusion protein. Mol. Cell. Biol. 14, 3403–3413.PubMedGoogle Scholar
  10. 10.
    Yoshihara, T., Inaba, T., Shapiro, L.H., Kato, J.Y., and Look, A.T. (1995). E2A-HLF-mediated cell transformation requires both the trans-activation domains of E2A and the leucine zipper dimerization domain of HLF. Mol. Cell. Biol. 15, 3247–3255.PubMedGoogle Scholar
  11. 11.
    Inaba, T., Inukai, T., Yoshihara, T., Seyschab, H., Ashmun, R.A., Canman, C.E., Laken, S.J., Kastan, M.B., and Look, A.T. (1996). Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382, 541–544.PubMedCrossRefGoogle Scholar
  12. 12.
    Inukai, T., Inaba, T., Ikushima, S., and Look, A.T. (1998). The AD1 and AD2 transactivation domains of E2A are essential for the antiapoptotic activity of the chimeric oncoprotein E2A-HLF. Mol. Cell. Biol. 18, 6035–6043.PubMedGoogle Scholar
  13. 13.
    Chen, W., Yu, Y.L., Lee, S.F., Chiang, Y.J., Chao, J.R., Huang, J.H., Chiong, J.H., Huang, C.J., Lai, M.Z., Yang-Yen, H.F., and Yen, J.J. (2001). CREB is one component of the binding complex of the Ces-2/E2AHLF binding element and is an integral part of the interleukin-3 survival signal. Mol. Cell. Biol. 21, 4636–4646.PubMedCrossRefGoogle Scholar
  14. 14.
    Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D’Agati, V., Orkin, S.H., and Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsai, F.Y., Keller, G., Kuo, F.C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F.W., and Orkin, S.H. (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226.PubMedCrossRefGoogle Scholar
  16. 16.
    Yu, Y.L., Chiang, Y.J., and Yen, J.J. (2002). GATA factors are essential for transcription of the survival gene E4bp4 and the viability response of interleukin-3 in Ba/F3 hematopoietic cells. J. Biol. Chem. 277, 27144–27153.PubMedCrossRefGoogle Scholar
  17. 17.
    Chtanova, T., Kemp, R.A., Sutherland, A.P., Ronchese, F., and Mackay, C.R. (2001). Gene microarrays reveal extensive differential gene expression in both CD4(+) and CD8(+) type 1 and type 2 T cells. J. Immunol. 167, 3057–3063.PubMedGoogle Scholar
  18. 18.
    Weiss, M.J., and Orkin, S.H. (1995). Transcription factor GATA- I permits survival and maturation of erythroid precursors by preventing apoptosis. Proc. Natl. Acad. Sci. USA. 92, 9623–9627.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsai, F.Y., and Orkin, S.H. (1997). Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89, 3636–3643.PubMedGoogle Scholar
  20. 20.
    Pandolfi, P.P., Roth, M.E., Karis, A., Leonard, M.W., Dzierzak, E., Grosveld, F.G., Engel, J.D., and Lindenbaum, M.H. (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11, 40–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Hendriks, R.W., Nawijn, M.C., Engel, J.D., van Doorninck, H., Grosveld, F., and Karis, A. (1999). Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918.PubMedCrossRefGoogle Scholar
  22. 22.
    Lai, C.K., and Ting, L.P. (1999). Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. J. Virol. 73, 3197–3209.PubMedGoogle Scholar
  23. 23.
    Yamamoto, M., Ko, L.J., Leonard, M.W., Beug, H., Orkin, S.H., and Engel, J.D. (1990). Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev. 4, 1650–1662.PubMedCrossRefGoogle Scholar
  24. 24.
    Martin, D.I., Zon, L.I., Mutter, G., and Orkin, S.H. (1990). Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344, 444–447.PubMedCrossRefGoogle Scholar
  25. 25.
    Romeo, P.H., Prandini, M.H., Joulin, V., Mignotte, V., Prenant, M., Vainchenker, W., Marguerie, G., and Uzan, G. (1990). Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344, 447–449.PubMedCrossRefGoogle Scholar
  26. 26.
    Ito, E., Toki, T., Ishihara, H., Ohtani, H., Gu, L., Yokoyama, M., Engel, J.D., and Yamamoto, M. (1993). Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 362, 466–468.PubMedCrossRefGoogle Scholar
  27. 27.
    Yomogida, K., Ohtani, H., Harigae, H., Ito, E., Nishimune, Y., Engel, J.D., and Yamamoto, M. (1994). Developmental stage-and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development. 120, 1759–1766.PubMedGoogle Scholar
  28. 28.
    Weiss, M.J., and Orkin, S.H. (1995). GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 23, 99–107.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jeffrey J. Y. Yen
    • 1
  • Yung-Luen Yu
    • 1
  • Wannhsin Chen
    • 1
    • 2
  • Yun-Jung Chiang
    • 1
  1. 1.Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
  2. 2.Division of Biomaterials and Tissue Engineering, Biomedical Engineering CenterIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations