Akt and Bcl-xL Are Independent Regulators of the Mitochondrial Cell Death Pathways

  • David R. Plas
  • Jeffrey C. Rathmell
  • James E. Thompson
  • Craig B. Thompson


In vivo, hematopoietic cells require continuous signals from their microenvironment to prevent activation of the endogenous programmed cell death machinery. Cell survival is therefore limited by the availability of ligands for the receptors that can influence cell survival. Following loss of receptor engagement, IL-3-dependent hematopoietic cells undergo a rapid decline in cellular metabolism, characterized by reductions in surface expression of the glucose transporter GLUT-1, mitochondrial potential, and cellular ATP. Two distinct classes of oncogenes can prevent cell death in response to declines in glucose uptake and metabolism following growth factor withdrawal: pro-survival Bc1-2 proteins, such as Bcl-xL, or an activated form of Akt. However, Bcl-xL and Akt appear to promote survival by distinct mechanisms. Expression of activated Akt leads to maintenance of glucose transporter expression, glycolytic activity, mitochondrial potential, and cell size, while Bcl-xL-expressing cells deprived of growth factor survive in a more vegetative state characterized by small cells with reduced mitochondrial potential and glycolytic activity. Akt-mediated survival is dependent on promoting glycolysis and maintaining a physiologic mitochondrial potential. In contrast, Bcl-xL maintains mitochondrial integrity in the face of a reduced mitochondrial membrane potential in growth factor-deprived cells. Thus, Akt and Bcl-xL suppress mitochondrial-initiated apoptosis by distinct mechanisms.


Glucose Uptake Mitochondrial Membrane Potential Outer Mitochondrial Membrane Glycolytic Activity Mitochondrial Integrity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., and Korsmeyer, S. J. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondria) apoptosis. Mol Cell 8, 705–711.PubMedCrossRefGoogle Scholar
  2. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.PubMedCrossRefGoogle Scholar
  3. Edinger, A. L., and Thompson, C. B. (2002). Akt Maintains Cell Size and Survival by Increasing mTOR-dependent Nutrient Uptake. Mol Biol Cell 13, 2276–2288.PubMedCrossRefGoogle Scholar
  4. Hajduch, E., Litherland, G. J., and Hundal, H. S. (2001). Protein kinase B (PKBIAkt)—a key regulator of glucose transport? FEBS Lett 492, 199–203.PubMedCrossRefGoogle Scholar
  5. Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.PubMedCrossRefGoogle Scholar
  6. Huang, D. C., and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842.PubMedCrossRefGoogle Scholar
  7. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997). The release of cytochrome c from mitochondria: a primary site for Bc1–2 regulation of apoptosis. Science 275, 1 132–1136.Google Scholar
  8. Lindsten, T., Ross. A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., Ulrich, E., Waymire, K. G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bc1–2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389–1399.PubMedCrossRefGoogle Scholar
  9. Marrack, P., Bender, J., Hildeman, D., Jordan, M., Mitchell, T., Murakami, M.. Sakamoto, A., Schaefer, B. C., Swanson, B., and Kappler, J. (2000). Homeostasis of alpha beta TCR+ T cells. Nat Immunol 1, 107–111.CrossRefGoogle Scholar
  10. Plas, D. R., Talapatra, S., Edinger, A. L., Rathmell, J. C., and Thompson, C. B. (2001). Akt and Bcl-xL Promote Growth Factor-independent Survival through Distinct Effects on Mitochondrial Physiology. J Biol Chem 276, 12041–12048.PubMedCrossRefGoogle Scholar
  11. Rathmell, J. C., and Thompson, C. B. (2002). Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109 Suppl, S97–107.Google Scholar
  12. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A., and Thompson, C. B. (2000). In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6, 683–692.PubMedCrossRefGoogle Scholar
  13. Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9, 459–470.PubMedCrossRefGoogle Scholar
  14. Songyang, Z., Baltimore, D., Cantley, L. C., Kaplan, D. R., and Franke, T. F. (1997). Interleukin 3-dependent survival by the Akt protein kinase. Proc Nat! Acad Sci USA 94, 11345–11350.CrossRefGoogle Scholar
  15. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo. I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.PubMedCrossRefGoogle Scholar
  16. Tsujimoto, Y., Cossman, J., Jaffe. E., and Croce, C. M. (1985). Involvement of the bc1–2 gene in human follicular lymphoma. Science 228, 1440–1443.PubMedCrossRefGoogle Scholar
  17. Vander Heiden, M. G., Chandel, N. S., Schumacker, P. T., and Thompson, C. B. (1999). Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondria! ATP/ADP exchange. Mol Cell 3, 159–167.CrossRefGoogle Scholar
  18. Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T., and Thompson, C. B. (1997). Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627–637.CrossRefGoogle Scholar
  19. Vander Heiden, M. G., Plas, D. R., Rathmell, J. C., Fox, C. J., Harris, M. H., and Thompson, C. B. (2001). Growth Factors Can Influence Cell Growth and Survival through Effects on Glucose Metabolism. Mol Cell Biol 21, 5899–5912.CrossRefGoogle Scholar
  20. Vander Heiden, M. G., and Thompson, C. B. (1999). Bc1–2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1, E209–216.CrossRefGoogle Scholar
  21. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.PubMedCrossRefGoogle Scholar
  22. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. (1997). Prevention of apoptosis by Bel-2: release of cytochrome c from mitochondria blocked. Science 275, 1129– I 132.Google Scholar
  23. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R., and Thompson, C. B. (2001). BH3-only proteins that bind pro-survival Bc1–2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 1481–1486.PubMedCrossRefGoogle Scholar
  24. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • David R. Plas
  • Jeffrey C. Rathmell
  • James E. Thompson
  • Craig B. Thompson
    • 1
  1. 1.Departments of Medicine and Cancer Biology, Abramson Family Cancer Research InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations