Developmental Expression of Amyloid Precursor Protein in Normal and Trisomy 16 Mice

  • Shannon Fisher
  • Mary Lou Oster-Granite
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)


Down Syndrome (DS) or Trisomy 21 (Ts21) is the most common genetic cause of mental retardation in human newborns 1. While some DS individuals manifest cognitive decline as they age, those DS individuals who survive to become adults invariably have the neuropathologic stigmata of Alzheimer’s disease (AD) at autopsy 2. Overexpression of individual genes on human chromosome 21 (HSA 21) may contribute to the pathogenesis of these neuropathologic changes in both DS individuals and in AD patients 3. To explore this possibility, we study a model system, the trisomy 16 (Ts16) mouse. Mouse chromosome 16 (MMU 16) and HSA 21 exhibit significant genetic homology for a cluster of genes whose overexpression as a result of triplication is thought to contribute to the phenotypic characteristics of DS 4.


Down Syndrome Alternate Splice Form Down Syndrome Brain Cerebrovascular Amyloid Normal Mouse Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. T. Coyle, M. L. Oster-Granite, and J. D. Gearhart. The neurobiologic consequences of Down Syndrome, Brain Res. Bull. 16: 773 (1986).CrossRefGoogle Scholar
  2. 2.
    K. E. Wisniewski, H. M. Wisniewski, and G. Y. Wen. Occurrence of neuropathologic changes and dementia of Alzheimer’s disease in Down’s syndrome, Ann. Neurol. 17: 278 (1985).CrossRefGoogle Scholar
  3. 3.
    J. T. Coyle, M. L. Oster-Granite, R. H. Reeves, and J. D. Gearhart. Down syndrome, Alzheimer’s disease, and the trisomy 16 mouse. TINS 11: 390 (1988).Google Scholar
  4. 4.
    R. H. Reeves, J. D. Gearhart, and J. W. Littlefield. Genetic basis of a mouse model of Down Syndrome, Brain Res. Bull. 16: 803 (1986).CrossRefGoogle Scholar
  5. 5.
    G. G. Glenner and C. W. Wong. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys, Res. Comm. 120: 885 (1984).CrossRefGoogle Scholar
  6. 6.
    G. G. Glenner and C. W. Wong. Alzheimer’s disease and Down syndrome: sharing a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Comm. 122: 1131 (1984).CrossRefGoogle Scholar
  7. 7.
    C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther. Amyloid core protein in Alzheimer’s disease and Down syndrome, Proc. Natl. Mad, Sci. USA 82: 4245 (1985).CrossRefGoogle Scholar
  8. 8.
    J. Kang, H-G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters, K-H. Grzeschik, G. Malthaup, K. Beyreuther, and B. Muller-Hill. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor, Nature 325: 733 (1987).CrossRefGoogle Scholar
  9. 9.
    R. E. Tanzi, J. F. Gusella, P. C. Watkins, G. A. P. Bruns, P. St. George-Hyslop, M. L. van Keuren, D. Patterson, S. Pagan, D. M. Kurnit, and R. L. Neve. Amyloid (3 protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science 235: 880 (1987).Google Scholar
  10. 10.
    D. Goldgaber, M. I. Lerman, O. W. McBride, U. Saffiotti, and D. C. Gajdusek. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease, Science 235: 877 (1987).CrossRefGoogle Scholar
  11. 11.
    P. Ponte, P. Gonzalez-DeWhite, J. Schilling, J. Miller, D. Hsu, B. Greenberg, K. Davis, W. Wallace, I. Lieberberg, F. Fuller, and B. Cordell. A new A4 amyloid mRNA contains a domain homologous to serine protease inhibitors, Nature 331: 525 (1988).CrossRefGoogle Scholar
  12. 12.
    R. E. Tanzi, A. I. McClatchey, E. D. Lamperti, L. Villa-Komaroff, J. F. Gusella, and R. L. Neve. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331: 528 (1988).CrossRefGoogle Scholar
  13. 13.
    N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri, and H. Ito. Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitor activity, Nature 331: 530 (1988).CrossRefGoogle Scholar
  14. 14.
    R. L. Neve, E. A. Finch, and L. R. Dawes. Expression of the Alzheimer amyloid precursor gene transcripts in the human brain, Neuron in press.Google Scholar
  15. 15.
    T. Yamada, H. Sasaki, H. Furuya, T. Miyata, I. Goto, and Y. Sakaki. Complementary DNA for the mouse homolog of the human amyloid beta protein precursor, Biochem. Biophys. Res. Comm. 149: 665 (1987).CrossRefGoogle Scholar
  16. 16.
    R. H. Reeves, N. K. Robakis, M. L. Oster-Granite, H. M. Wisniewski, J. T. Coyle, and J. D. Gearhart. Genetic linkage in the mouse of genes involved in Down syndrome and Alzheimer’s disease in man, Molec. Brain Res. 2: 215 (1988).CrossRefGoogle Scholar
  17. 17.
    C. Bendotti, G. L. Forloni, R. A. Morgan, B. F. O’Hara, M. L. Oster-Granite, R. H. Reeves, J. D. Gearhart, and J. T. Coyle. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice. Proc. Natl. Acad. Sci. USA 85: 3628 (1988).CrossRefGoogle Scholar
  18. 18.
    J. D. Gearhart, M. T. Davisson, and M. L. Oster-Granite. Autosomal aneuploidy in mice: Generation and developmental consequences. Brain Res. Bull. 16: 789 (1986).CrossRefGoogle Scholar
  19. 19.
    A. Gropp. Chromosomal animal model of human disease. Fetal trisomy and developmental failure, in: “Teratology, ” C. L. Berry and D. E. Poswillo, eds., Springer-Verlag, New York (1975).Google Scholar
  20. 20.
    J. D. Gearhart, H. S. Singer, T. H. Moran, M. Tiemeyer, M. L. Oster-Granite, and J. T. Coyle. Mouse chimeras composed of trisomy 16 and normal (2N) cells: Preliminary studies, Brain Res. Bull. 16: 815 (1986).CrossRefGoogle Scholar
  21. 21.
    S. Miyabara, A. Gropp, and H. Winking. Trisomy 16 in the mouse fetus associated with generalized edema and cardiovascular and urinary tract abnormalities. Teratology 25: 369 (1982).CrossRefGoogle Scholar
  22. 22.
    J. W. Chirgwin, A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18: 5294 (1979).CrossRefGoogle Scholar
  23. 23.
    V. F. Kalb, Jr. and R. W. Benlohr. A new spectrophotometric assay for protein in cell extracts, Anal. Biochertt. 82: 362 (1977).CrossRefGoogle Scholar
  24. 24.
    U. K. Laemmli Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680 (1970).Google Scholar
  25. 25.
    W. N. Burnette. “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate - polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated Protein A, Anal, Biochem. 112: 195 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Shannon Fisher
    • 1
  • Mary Lou Oster-Granite
    • 1
  1. 1.Developmental Genetics Laboratory of the Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations