Aberrant Protein Kinase C Cascades in Alzheimer’s Disease

  • Tsunao Saitoh
  • Gregory Cole
  • Tuan V. Huynh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)


Alzheimer’s disease (AD) is characterized by the dysfunction and eventual death of selected sets of central nervous system cortical neurons. This deterioration of neurons is responsible for the cognitive impairment of patients. The reason for this neuronal death is not known. In 1981, Appel proposed that the lack of a neurotrophic factor might be responsible for neuronal loss in AD. Two years later, Hefti suggested that NGF may be the neurotrophic factor missing in AD. However, normal levels of NGF mRNA have been found in AD brain (Goedert et al., 1986), indicating that a new hypothesis might be necessary to explain neuronal dysfunction and loss in AD. Indeed, we now know that many classes of neurons that are not responsive to NGF are also lost in AD. Furthermore, there is direct evidence for increased neurotrophic activity in AD brain (Uchida et al., 1988), suggesting that rather than a generalized deficit of trophic factors, a defect exists in the responsive machinery within the target cells.


Neurofibrillary Tangle Neuritic Plaque Acute Spinal Cord Ischemia Threonine Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appel, S. H., 1981, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease, Ann. Neurol., 10: 499.CrossRefGoogle Scholar
  2. Blass, J. P., Zemcov, A., 1984, Alzheimer’s disease: a metabolic systems degeneration? Neurochem. Pathol., 2, 103.CrossRefGoogle Scholar
  3. Cohen, M. L., Golde, T. E., Usiak, M. F., Younkin, L. H., Younkin, S. G., 1988, In situ hybridization of nucleus basalis neurons shows increased beta-amyloid mRNA in Alzheimer disease, Proc. Natl. Acad. Sci. U. S. A., 85: 1227.Google Scholar
  4. Cole, G., Dobkins, K. R., Hansen, L. A., Terry, R. D., and Saitoh, T., 1988, Decreased levels of protein kinase C in Alzheimer brain, Brain Res., 452: 165.CrossRefGoogle Scholar
  5. Goedert, M., Fine, A., Hunt, S. P., and Ullrich, A., 1986, Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease, Mol. Brain Res., 1: 85.CrossRefGoogle Scholar
  6. Hama, T., Huang, K.-P., and Guroff, G., 1986, Protein kinase C as a component of a nerve growth factor-sensitive phosphorylation system in PC12 cells, Proc. Natl. Acad. Sci. U. S. A., 83: 2353.CrossRefGoogle Scholar
  7. Hefti, F., 1983, Is Alzheimer disease caused by lack of nerve growth factor? Ann. Neurol., 13: 109.CrossRefGoogle Scholar
  8. Higgins, G. A., Lewis, D. A., Bahmanyar, S., Goldgaber, D., Gajdusek, D. C., Young, W. G., Morrison, J. H., Wilson, M. C., 1988, Differential regulation of amyloidbeta-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease, Proc. Natl. Acad. Sci. U. S. A., 85: 1297.CrossRefGoogle Scholar
  9. Huynh, T. V., Cole, G., Katzman, R., Huang, K.-P., and Saitoh, T., 1989, Reduced Mr 79,000 protein phosphorylation and PK-C immunoreactivity in AD fibroblasts, submitted for publication.Google Scholar
  10. Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S., and Ito, H., 1988, Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity, Nature, 331: 530.CrossRefGoogle Scholar
  11. Kochhar, A., Zivin, J. A., and Saitoh, T., 1987. The effects of ischemia on protein phosphorylation in rabbit spinal cord, Soc. Neurosci. Abstr., 13: 1499.Google Scholar
  12. Love, S., Saitoh, T., Quijada, S., Cole, G., and Terry, R. D., 1988, Alz-50, ubiquitin and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies, J. Neuropathol. Exp. Neurol., 47: 393.CrossRefGoogle Scholar
  13. Matthies, H. G. J., Palfrey, H. C., Hirning, L. D., and Miller, R. J., 1987, Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release, J. Neurosci. 7: 1198.Google Scholar
  14. Neve, R. L., Finch, E. A., and Dawes, L. R., 1988, Expression of the Alzheimer amyloid precursor gene transcripts in the human brain, Neuron, 1: 669.CrossRefGoogle Scholar
  15. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science, 233: 305.CrossRefGoogle Scholar
  16. Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K., Wallace, W., Lieberburg, I., Fuller, F., and Cordell, B., 1988, A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors, Nature, 331: 525.CrossRefGoogle Scholar
  17. Saitoh, T., and Dobkins, K. R., 1986, In vitro phosphorylation of a Mr 60,000 protein is elevated in Alzheimer brain, Proc. Natl. Acad. Sci. U. S. A., 83: 9764.CrossRefGoogle Scholar
  18. Saitoh, T., Cole, G., Huynh, T., Katzman, R., and Sundsmo, M., 1988a, Abnormal protein kinase C in Alzheimer fibroblasts, Soc. Neurosci. Abstr., 14: 154.Google Scholar
  19. Saitoh, T., Hansen, L. A., Dobkins, K. R., and Terry, R. D., 1988b, Increased Mr 60,000 protein phosphorylation is correlated with neocortical neurofibrillary tangles in Alzheimer’s disease, J. Neuropathol. Exp. Neurol., 47: 1.CrossRefGoogle Scholar
  20. Stabel, S., Rodriguez-Pena, A., Young, A., Rozengurt, E., and Parker, P. J., 1987, Quantitation of protein kinase C by immunoblot — expression in different cell lines and response to phorbol esters, J. Cell. Physiol., 130: 111.CrossRefGoogle Scholar
  21. Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Komaroff, L., Gusella, J. F., and Neve, R. L., 1988, Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Nature, 331: 528.CrossRefGoogle Scholar
  22. Terry, R. D., Hansen, L. A., DeTeresa, R., Davies, P., Tobias, H., and Katzman, R., 1987, Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles, J. Neuropathol. Exp. Neurol., 46: 262.CrossRefGoogle Scholar
  23. Uchida, Y., Ihara, Y., and Tomonaga, M., 1988, Alzheimer’s disease brain extract stimulates the survival of cerebral cortical neurons from neonatal rats, Biochem. Biophys. Res. Commun. 150: 1263.CrossRefGoogle Scholar
  24. Uéda, K., Cole, G., Sundsmo, M., Katzman, R., and Saitoh, T., 1989, Decreased adhesiveness of Alzheimer fibroblast: is B-protein precursor involved? Ann. Neurol. in press.Google Scholar
  25. Wisniewski, K., Jervis, G. A., Moretz, R.C., and Wisniewski, H. M., 1979, Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia, Ann. Neurol., 5: 288.CrossRefGoogle Scholar
  26. Wolozin, B. L., Pruchnicki, A., Dickson, D. W., and Davies, P., 1986, A neuronal antigen in the brains of Alzheimer patients, Science, 232: 648.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Tsunao Saitoh
    • 1
  • Gregory Cole
    • 1
  • Tuan V. Huynh
    • 1
  1. 1.Department of Neurosciences, M-024 and the Center for Molecular GeneticsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations