Skip to main content

Structure and Function of the Neural Cell Adhesion Molecules NCAM and L1

  • Chapter
Molecular Aspects of Development and Aging of the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 265))

Abstract

During development of the nervous system, several morphogenetic processes act together to establish its orderly structure by generating specific nerve connections. The steps involved in neural pattern formation include cell differentiation, cell migration, axonal outgrowth, target recognition and synapse formation. Earlier, these processes were only characterized at the morphological level although it was obvious that adhesive interactions between cell surfaces and the extracellular milieu were of central importance. Several systems mediating cell-cell or cell-substratum adhesion have now been identified on the surface of neural cells and described at the molecular level (Jessell, 1988; Rutishȧuser and Jessell, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbas J.A., Chaix J.C., Steinmetz M., and Goridis C., 1988, Differential splicing and alternative polyadenylation generates distinct NCAM transcripts and proteins in the mouse, EMBO J., 7: 625.

    Google Scholar 

  • Bhat S. and Silberberg D.H., 1988, Developmental expression of neural cell adhesion molecules of oligodendrocytes in vivo and in culture, J. Neurochem., 50:1830.

    Google Scholar 

  • Bock E., Edvardsen K., Gibson A., Linnemann D., Lyles J.M., and Nybroe O., 1987, Characterization of soluble forms of NCAM, FEBS Lett., 225: 33.

    Article  Google Scholar 

  • Bronner-Fraser M., 1986, An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vitro. Dev. Biol., 117:528.

    Google Scholar 

  • Chang S., Rathjen F.G., and Raper J.A., Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins, J. Cell Biol., 104:355.

    Google Scholar 

  • Chuong C.-M., Crossin K.L., and Edelman G.M., 1987, Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers. J. Cell Biol., 104:331.

    Google Scholar 

  • Cole G.J. and Glaser L., 1986, A heparin-binding domain from N-CAM is in neural cell-substratum adhesion, J. Cell Biol., 102:403.

    Google Scholar 

  • Cole C.J. and Schachner M., 1987, Localization of the L2 monoclonal antibody binding site on chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM mediated adhesion, Neurosci. Lett., 78:227.

    Google Scholar 

  • Crossin K.L., Edelman G.M., and Cunningham B.A., 1984, Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule, J. Cell Biol., 99:1848.

    Google Scholar 

  • Cunningham B.A., Hemperly J.J., Murray B.A., Prediger E.A., Brackenbury R., and Edelman G.M., 1987, Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing, Science, 236: 799.

    Google Scholar 

  • Edelman G.M., 1984a, Cell-adhesion molecules. A molecular basis for animal form. Sci. Am., 250:118.

    Google Scholar 

  • Edelman G.M., 1984b, Cell adhesion and morphogenesis: The regulator hypothesis. Proc. Natl. Acad. Sci., 81:1460.

    Google Scholar 

  • Ehrlich Y.H., Davis T.B., Bock E., Kornecki E., and Lenox R.H., 1986, Ecto-protein kinase activity on the external surface of neural cells, Nature, 320: 67.

    Google Scholar 

  • Faissner A., Teplow D.B., Kübler D., Keilhauer G., Kinzel V., and Schachner M., 1985, Biosynthesis and membrane topography of the neural cell adhesion molecule L1, EMBO J., 4: 3105.

    Google Scholar 

  • Finne J., 1982, Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain, J. Biol. Chem., 257:11966.

    Google Scholar 

  • Fischer G., Künemund V., and Schachner M., 1986, Neurite outgrowth patterns in cerebellar microexplant cultures are affected by the antibodies to the cell surface glycoprotein L1, J. Neurosci., 6:605.

    Google Scholar 

  • Gennarini G., Hirn M., Deagostini-Bazin H., and Goridis C., 1984a, Studies of the transmembrane disposition of the neural cell adhesion molecule N-CAM. The use of liposome inserted radioiodinated NCAM to study its transbilayer orientation, Eur. J. Biochem., 142:65.

    Google Scholar 

  • Gennarini G., Rougon G., Deagostini-Bazin H., Hirn M., and Goridis C., 1984b, Studies of the transmembrane disposition of the neural cell adhesion molecule N-CAM. A monoclonal antibody recognizing a cytoplasmic domain and evidence for the presence of phosphoserine residues, Eur. J. Biochem., 142:57.

    Google Scholar 

  • Goridis C. and Wille W., 1988, Three size classes of mouse NCAM proteins arise from a single gene by a combination of alternative splicing and use of different polyadenylation sites, Neurochem. Int., 12:269.

    Google Scholar 

  • Grumet M., Hoffman S., Chuong C,-M., and Edelman G.M., 1984, Polypeptide components and binding functions of neuronglia cell adhesion molecules, Proc. Natl. Acad. Sci., 81:7989.

    Google Scholar 

  • Grumet M. and Edelman G.M., 1988, Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms, J. Cell Biol., 106:487.

    Google Scholar 

  • Hatta K., Takagi S., Fujisawa H., and Takeichi M., 1987, Spatial and temporal expression pattern of N-cadherin adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol., 120:215.

    Google Scholar 

  • He H.-T., Barbet J., Chaix J.C., and Goridis C., 1986, Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule, EMBO J., 5: 2489.

    Google Scholar 

  • He H.-T., Finne J., and Goridis C., 1987, Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule, J. Cell Biol., 105:2489.

    Google Scholar 

  • Jessell T.M., 1988, Adhesion molecules and the hierarchy of neural development. Neuron, 1: 3.

    Google Scholar 

  • Keilhauer G., Faissner A., and Schachner M., 1985, Differential inhibition of neurone-neurone, neuroneastrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies, Nature, 316: 728.

    Google Scholar 

  • Kruse J., Mailhammer R., Wernecke H., Faissner A., Sommer I., Goridis C, and Schachner M., 1984, Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1, Nature, 311: 153.

    Google Scholar 

  • Künemund V., Jungalwala F.B., Fischer G., Chou D.K.H., Keilhauer G., and Schachner M., 1988, The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions, J. CE11 Biol., 106:213.

    Google Scholar 

  • Lindner J., Zinser G., Werz W., Goridis C., Bizzini B., and Schachner M., 1986, Experimental modification of postnatal cerebellar granule cell migration in vitro. Brain Res., 377: 298.

    Google Scholar 

  • Linnemann D., Lyles J.M., and Bock E., 1985, A developmental study of the biosynthesis of the neural adhesion molecule, Dev. Neurosci., 7:230.

    Google Scholar 

  • Linnemann D., Nybroe O., Gibson A., Rohde H., Jorgensen O.S., and Bock E., 1987, Characterization of the biosynthesis, membrane association and function of the cell adhesion molecule L1, Neurochem. Int., 10:113.

    Google Scholar 

  • Lyles J.M., Linnemann D., and Bock E., 1984, Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes, J. Cell Biol., 99:2082.

    Google Scholar 

  • Matsunaga M., Hatta K., Nagafuchi A., and Takeichi M., 1988, guidance of optic nerve fibres by N-cadherin adhesion molecules, Nature, 334: 62.

    Google Scholar 

  • Moos M., Tacke R., Scherer H., Teplow D., Früh K., and Schachner M., 1988, Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin, Nature, 334: 701.

    Google Scholar 

  • Moran N. and Bock E., 1988, Characterization of kinetics of NCAM homophilic binding, FEBS Lett., in press.

    Google Scholar 

  • Nose A., Nagafuchi A. and Takeichi M., 1988, Expressed recombinant cadherins mediate cell sorting in model systems, Cell, 54: 993.

    Google Scholar 

  • Neugebauer K.M., Tomaselli K.J., Lilien J., and Reichardt L.F., 1988, N-cadherin, NCAM, and Integrins promote retinal neurite outgrowth on astrocytes in vitro, J Cell Biol., 107: 1177.

    Google Scholar 

  • Nybroe O., Albrechtsen M., Dahlin J., Linnemann D., Lyles J.M., Moller C.J., and Bock E., 1985, Biosynthesis of the neural cell adhesion molecule: Characterization of polypeptide C, J. Cell Biol., 101:2310.

    Google Scholar 

  • Nybroe O., Linnemann D., and Bock E., 1988, NCAM biosynthesis in brain, Neurochem. Int., 12:252.

    Google Scholar 

  • Persohn E. and Schachner M., 1987, Immunelectromicroscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum, J. Cell Biol., 105:569.

    Google Scholar 

  • Pollerberg G.E., Burridge K., Krebs K.E., Goodman S.R., and Schachner M., 1987, The 180 kD component of the neural cell adhesion molecule is involved in cell-cell contacts and cytoskeleton-membrane interactions, Cell Tissue Res., 250: 227.

    Google Scholar 

  • Rutishauser U., Hoffmann S, and Edelman G.M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci., 73:577.

    Google Scholar 

  • Rutishauser U., Acheson A., Hall A.K., Mann D.M., and Sunshine J., 1988, The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions, Science, 240: 53.

    Google Scholar 

  • Rutishauser U. and Jessell T.M., 1988. Cell adhesion molecules in vertebrate neural development, Phys. Rev., 68:819.

    Google Scholar 

  • Sadoul K., Meyer A., Low M.G., and Schachner M., 1986, Release of the 120 kD component of the mouse neural cell adhesion molecule N-CAM from cell surfaces by phosphatidylinositol-specific phospholipase C, Neurosci. Lett., 72:341.

    Google Scholar 

  • Sadoul K., Sadoul R., Faissner A., and Schachner M., 1988, Biochemical characterization of different molecular forms of the neural cell adhesion molecule L1, J. Neurochem., 50: 510.

    Article  Google Scholar 

  • Salton S.R.J., Shelanski M.L., and Green L.A., 1983,

    Google Scholar 

  • Biochemical properties of the nerve growth factor-inducible large external (NILE) glycoprotein, J. Neurosci., 3:2420.

    Google Scholar 

  • Sorkin B.C., Hoffmann S., Edelman G.M., and Cunningham B.A., 1984, Sulfation and phosphorylation of the neural cell adhesion molecule, N-CAM, Science, 225: 1476.

    Article  Google Scholar 

  • Staehelin L.A. and Arntzen C.J., 1983, Regulation of chloroplast membrane function: Protein phosphorylation changes the spatial organization of membrane components, J. Cell Biol., 97:1327.

    Google Scholar 

  • Stallcup W.P. and Beasley L., 1985, Involvement of the nerve growth factor-inducible large external glycoprotein (NILE) in neurite fasciculation in primary culture of rat brain, Proc. Natl. Acad. Sci., 82:1276.

    Google Scholar 

  • Takeichi M., 1987, Cadherins: molecular family essential for selective cell-cell adhesion and animal morphogenesis, Trends Genet., 3: 213.

    Google Scholar 

  • Walsh F.S., 1988, The N-CAM gene is a complex transcriptional unit, Neurochem. Int., 12:263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nybroe, O., Bock, E. (1990). Structure and Function of the Neural Cell Adhesion Molecules NCAM and L1. In: Lauder, J.M., Privat, A., Giacobini, E., Timiras, P.S., Vernadakis, A. (eds) Molecular Aspects of Development and Aging of the Nervous System. Advances in Experimental Medicine and Biology, vol 265. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5876-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5876-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5878-8

  • Online ISBN: 978-1-4757-5876-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics