Advertisement

Cerebellar Granule Cell Migration Involves Proteolysis

  • Nicholas W. Seeds
  • Susan Haffke
  • Kathleen Christensen
  • Judith Schoonmaker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)

Abstract

Histogenesis in the central nervous system requires extensive cell migration. The migration of granule neurons in the neonatal mouse cerebellum has been a focus of study. Although granule cell migration occurs in close association with Bergmann glial fibers1 and Purkinje cell dendrites2, the actual mechanisms of movement that probably involve cytoskeletal systems as well as the interaction of cell surface and extracellular matrix components remain to be established.

Keywords

Glial Fibrillary Acidic Protein Granule Cell Granule Neuron Tetanus Toxin Plasminogen Activator Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Rakic and R. L. Sidman, Proc. Nat. Acad. Sci. USA. 70:240 (1973).Google Scholar
  2. 2.
    C. Sotelo and J.-P. Changuex, Brain Res. 77: 484 (1974).CrossRefGoogle Scholar
  3. 3.
    K. Dano, P. Andreasen, J. Grondahl-Hansen, P. Kristensen, L. Nielsen and L. Skiver, Advances in Cancer Res. 44: 139 (1985).CrossRefGoogle Scholar
  4. 4.
    J. Unkeless, J. Gordon and E. Reich, J. Exp. Med. 139: 834 (1974).CrossRefGoogle Scholar
  5. 5.
    D. Beers, S. Strickland and E. Reich, Cell 6: 387 (1975).CrossRefGoogle Scholar
  6. 6.
    A. Krystosek and N. W. Seeds, Fed. Proc. 37: 1702a (1978).Google Scholar
  7. 7.
    H. Soreq and R. Miskin, Brain Res. 216: 361 (1981).CrossRefGoogle Scholar
  8. 8.
    A. Krystosek and N. W. Seeds, Proc. Nat. Acad. Sci. USA. 78: 7810 (1981).CrossRefGoogle Scholar
  9. 9.
    A. Krystosek and N. W. Seeds, Science 213: 1532 (1981).Google Scholar
  10. 10.
    A. Krystosek and N. W. Seeds, J. Cell Biol. 98: 773 (1984).CrossRefGoogle Scholar
  11. 11.
    R. Pittman, Develop. Biol. 110:91 (1985).Google Scholar
  12. 12.
    A. Alvarez-Buylla and J. Valinsky, Proc. Nat. Acad. Sci. USA. 82: 3519 (1985).Google Scholar
  13. 13.
    N. W. Seeds, R. Hawkins, S. Verrall, S. Haffke, J. Schoonmaker and A. Krystosek, J. Cell Biol. 103: 439a (1986).Google Scholar
  14. 14.
    E. Trenkner and R. L. Sidman, J Cell Biol. 75: 915 (1977).CrossRefGoogle Scholar
  15. 15.
    P. Jones, W. Benedict, S. Strickland and E. Reich, Cell 5: 323 (1975)CrossRefGoogle Scholar
  16. 16.
    N. W. Seeds, Proc. Nat. Acad. Sci. USA. 72:4110 (1975).Google Scholar
  17. 17.
    E. Trenkner, D. Smith and N. Segil, J. Neurosci. 4: 2850 (1984).Google Scholar
  18. 18.
    J. Altman, J. Comp. Neurol. 128: 431 (1966).CrossRefGoogle Scholar
  19. 19.
    S. Fujita, in “Evaluation of Forebrain”, R. Hassler and H Stephen, eds., Plenum Press, New York (1966).Google Scholar
  20. 20.
    J. Edmunson and M. Hatten, J. Neurosci. 7: 1928 (1987).Google Scholar
  21. 21.
    A. Krystosek and N. W. Seeds, Exp. Cell Res. 166: 131 (1986).Google Scholar
  22. 22.
    P. G. McGuire and N. W. Seeds, J. Cell Biol. 107: 374a (1988).Google Scholar
  23. 23.
    G. Moonen, M. Graw-Wagemans and I. Selak, Nature 298: 753 (1983).CrossRefGoogle Scholar
  24. 24.
    J. P. Quigley, L. Gold, R. Schwimmer and L. Sullivan, Proc. Nat. Acad. Sci. USA. 84:2776 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Nicholas W. Seeds
    • 1
  • Susan Haffke
    • 1
  • Kathleen Christensen
    • 1
  • Judith Schoonmaker
    • 1
  1. 1.Department of Biochemistry/Biophysics/GeneticsUniversity of Colorado Health Science CenterDenverUSA

Personalised recommendations