Matrix Interactions Regulating Myelinogenesis in Cultured Oligodendrocytes

  • Leonard H. Rome
  • Michael C. Cardwell
  • Phyllis N. Bullock
  • Steven P. Hamilton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 265)


Myelin is a membrane unique to the nervous system that is deposited in segments along selected nerve fibers. Myelin functions as an insulator to increase the velocity of impulses transmitted between the cell body of a nerve and its target. In the central nervous system (CNS) myelin is produced by oligodendroglial cells. Each cell extends numerous processes that ensheathe segments of several different axons simultaneously. A different mechanism of myelination appears to occur in the peripheral nervous system where Schwann cells myelinate only single segments of single axons. Other differences are seen between Schwann cells and oligodendroglia such as morphology, growth factor requirements, extracellular matrix involvement and composition of the myelin produced.


Schwann Cell Myelin Membrane Growth Factor Requirement Schwann Cell Myelination Schwann Cell Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradel E.J., and F.P. Prince. 1983. Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons. J. Neurosci. Res. 9:381-392.Google Scholar
  2. 2.
    Rome L.H., P.N. Bullock, F. Chiappelli, M.C. Cardwell, A.M. Adinolfi, and D. Swanson. 1986. Synthesis of a myelin-like membrane by oligodendrocytes in culture. J. Neurosci. Res. 15:49-65.Google Scholar
  3. 3.
    Szuchet, S., S.H. Yim, and S. Monsma. 1983. Lipid metabolism of isolated oligodendrocytes maintained in long-term culture mimics events associated with myelinogenesis. Proc. Natl. Acad. Sci. USA 80:7019-7023.Google Scholar
  4. 4.
    Enders, G.C., J.H. Henson and C.F. Millette. 1986. Sertoli cell binding to isolated testicular basement membrane. J. Cell Biol. 103:1109-1119.Google Scholar
  5. 5.
    Li, M.L., J. Aggeler, D.A. Farson, C. Hatier, J. Hassel, and M.J. Bissel. 1987. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136-140.Google Scholar
  6. 6.
    Ruoslahti, E., E.G. Hayman, and M.D. Pierschbacher. 1985. Extracellular matrices and cell adhesion. Arteriosclerosis 5: 581 - 594.Google Scholar
  7. 7.
    Sanes, J.R. 1983. Roles of extracellular matrix in neural development. Ann. Rev. Phvsiol. 45:581-600.Google Scholar
  8. 8.
    Carey D.J., M.S. Todd, and C.M. Rafferty. 1986. Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix. J. Cell Biol. 102:2254-2263.Google Scholar
  9. 9.
    McGarvey, M.L., A. Baron-Van Evercooren, H.K. Kleinman, and M. Dubois-Dalcq. 1984. Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev. Biol. 105:18-28.Google Scholar
  10. 10.
    Baron-Van Evercooren, A., A. Gansmuller, M. Gumpel, N. Baumann and N.K. Kleinman. 1986. Schwann cell differentiation in vitro: extracellular matrix deposition and interaction. Dev. Neurosci. 8:182-196.Google Scholar
  11. 11.
    Bunge, R.P., M.B. Bunge, and C.F. Eldridge. 1986. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Ann. Rev. Neurosci. 9:305328.Google Scholar
  12. 12.
    Carey D.J., M.S. Todd, and C.M. Rafferty. 1986. Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix. J. Cell Biol. 102:2254-2263.Google Scholar
  13. 13.
    Yim, S.H., S. Szuchet, and P.E. Polak. 1986. Cultured oligodendrocytes: a role for cell-substratum interaction in phenotypic expression. J. Biol. Chem. 261:11808-11815.Google Scholar
  14. 14.
    Akiyama, S.K., S.S. Yamada, and K.M. Yamada. 1986. Characterization of a 140-kD avian cell surface antigen as a fibronectin-binding molecule. J. Cell Biol. 102:442-448.Google Scholar
  15. 15.
    Hynes, R.O. 1981. Fibronectin and its relation to cellular structure and behavior. In Cell Biology of Extracellular Matrix. E.D. Hay, editor. Plenum Press, New York. 295 - 333.Google Scholar
  16. 16.
    Ruoslahti, E., E.G. Hayman, and M.D. Pierschbacher. 1985. Extracellular matrices and cell adhesion. Arteriosclerosis 5: 581 - 594.Google Scholar
  17. 17.
    Pierschbacher, M., E.G. Hayman, and E. Ruoslahti. 1983. Synthetic peptide with cell attachment activity of fibronectin. Proc. Natl. Acad. Sci. USA 80:1224-1227.Google Scholar
  18. 18.
    Pierschbacher, M.D., and E. Ruoslahti. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30-33.Google Scholar
  19. 19.
    Yamada, K.M., and D.W. Kennedy. 1984. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol. 99:29-36.Google Scholar
  20. 20.
    Ruoslahti, E., and M.D. Pierschbacher. 1986. Arg-Gly-Asp: a versatile cell recognition signal. Cell 44: 517 - 518.Google Scholar
  21. 21.
    Pytela, R., M.D. Pierschbacher, S. Argraves, S. Suzuki, and E. Rouslahti. 1987. Arginine-glycine-aspartic acid adhesion receptors. Meth. Enzymol. 144:475-489.Google Scholar
  22. 22.
    Ruoslahti, E., and M.D. Pierschbacher. 1987. New perspectives in cell adhesion: RGD and Integrins. Science 238: 491 - 497.Google Scholar
  23. 23.
    Hynes, R.O. 1987. Integrins: a family of cell surface receptors. Cell 48: 549 - 554.Google Scholar
  24. 24.
    Menko, A.S., and D. Boettinger. 1987. Occupation of the extracellular matrix receptor, Integrin, is a control point for myogenic differentiation. Cell 51: 51 - 57.CrossRefGoogle Scholar
  25. 25.
    Cardwell, M.C., and L.H. Rome. 1988. Evidence that an RGD-dependent receptor mediates the binding of oligodendrocytes to a novel ligand in a glial-derived matrix. J. Cell Biol. 107:1541-1549.Google Scholar
  26. 26.
    Holmes, E., Hermanson, R. Cole, and J. deVellis. 1988. Developmental expression of glial-specific mRNAs in primary cultures of rat brain visualized by in situ hybridization. J. Neurosci. Res. 19:389-396.Google Scholar
  27. 27.
    Walker, A.G., J.A. Chapman, and M.G. Rumsby. 1985. Immunocytochemical demonstration of glial-neuronal interactions and myelinogenesis in subcultures of rat brain cells. J. Neuroimmunol. 9:159-177.Google Scholar
  28. 28.
    Cardwell, M. C. and L.H. Rome. 1988. RGD-containing peptides inhibit the synthesis of myelin-like membranes by cultured oligodendrocytes. J. Cell Biol. 107:15511559.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Leonard H. Rome
    • 1
  • Michael C. Cardwell
    • 1
  • Phyllis N. Bullock
    • 1
  • Steven P. Hamilton
    • 1
  1. 1.Department of Biological Chemistry, and the Mental Retardation Research CenterUCLA School of MedicineLos AngelesUSA

Personalised recommendations