Models of Accommodation

  • George K. Hung
  • Kenneth J. Ciuffreda
  • Madjid Khosroyani
  • Bai-Chuan Jiang
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)

Abstract

The ability to see clearly at different distances is one of the most important functions of the human visual system. This is performed routinely and effortlessly in daily life by the process called accommodation. During this process, the accommodation system must sense that a new target is defocused beyond a blur threshold, develop the appropriate neurological control signal based on blur magnitude, and then adjust relatively rapidly the optics of the eye via the ciliary muscle until the target is once again in focus. Thus, it involves feedback regulation of visual optics via the sensing of retinal image blur. In addition, since blur per se does not provide the light vergence direction (Stark, 1968), the accommodation system must use perceptual cues and other sources of information to determine the appropriate direction of focus (Ciuffreda, 1991, 1998). It does this remarkably well, so that rarely does accommodation occur in the wrong direction under natural viewing conditions. Moreover, accommodation takes place repeated in daily life, so that the system must be continually available to provide clear vision in the performance of a variety of tasks at a range of different distances.

Keywords

Instability Oscillation Ciliary Muscle Accommodative Response Schematic Accommodation Saturation Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahill, A. T. and Stark, L., 1979, The trajectory of saccadic eye movements, Sci. Am. 240: 108–117.CrossRefGoogle Scholar
  2. Benjamin, W. J., ed., 1998, Borish’s Clinical Refraction: Principles and Practice, W. B. Saunders and Co., Philadel., PA.Google Scholar
  3. Brodkey, J. D., and Stark, L., 1967, Accommodative convergence-an adaptive nonlinear system, IEEE Trans. Sys. Sci. Cyber. 3: 121–133.CrossRefGoogle Scholar
  4. Campbell, F. W., 1957, The depth of field of the human eye, Optica Acta. 4: 157–164.CrossRefGoogle Scholar
  5. Campbell, F. W., 1959, Fluctuations of accommodation under steady viewing conditions, J. Physiol. 145: 579–594.Google Scholar
  6. Campbell, F. W., and Westheimer, G., 1960, Dynamics of the accommodation responses of the human eye, J. Physiol. 151: 285–295.Google Scholar
  7. Chauhan, K., and Charman, W. N., 1995, Single figure indices for the steady-state accommodative response, Ophthal. Physiol. Opt. 15: 217–221.Google Scholar
  8. Ciuffreda, K. J., 1991, Accommodation and its anomalies, in: Vision and Visual Dysfunction: Visual Optics and Instrumentation, vol. 1, W. N. Charman, ed., Macmillan, London, pp. 231–279.Google Scholar
  9. Ciuffreda, K. J., 1998, Accommodation, pupil, and presbyopia, in: Borish’s Clinical Refraction: Principles and Practice, W. J. Benjamin, ed., W. B Saunders, Philadel., PA, pp. 77–120.Google Scholar
  10. Ciuffreda, K.J., Scientific basis for and efficacy of optometric vision therapy in non- strabismic vergence and accommodative dysfunction, Optometry,in press.Google Scholar
  11. Ciuffreda, K. J., Hokoda, S. C., Hung, G. K., and Semmlow, J. L., 1984, Accommodative stimulus/response function in human amblyopia, Doc. Ophthalmol. 56: 303–326.CrossRefGoogle Scholar
  12. Ciuffreda, K. J., and Kenyon, R. V., 1983, Accommodative vergence and accommodation in normals, amblyopes, and strabismics, in: Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor, and K. J. Ciuffreda, eds., Butterworths, Boston, pp. 101–173.Google Scholar
  13. Ciuffreda, K. J., and Kruger, P. B., 1988, Dynamics of human voluntary accommodation, Am. J. Optom. Physiol. Opt. 65: 365–370.CrossRefGoogle Scholar
  14. Ciuffreda, K. J., Levi, D. M., and Selenow, A., 1991, Amblyopia: Basic and Clinical Aspects. Butterworths, Boston, MA.Google Scholar
  15. Ciuffreda, K. J., Rosenfield, M., and Chen, H.-W., 1997, The AC/A ratio, age, and presbyopia, Ophthal. Physiol. Opt. 17: 307–315.CrossRefGoogle Scholar
  16. Ciuffreda, K. J., Rosenfield, M., and Chen, H. W., 2000, Accommodation, age, and presbyopia, in: Accommodation and Vergence Mechanisms in the Visual System, O. Franzén, H. Richter, and L. Stark, eds., Birkhäuser Verlag, Basel, Switzerland, pp. 193–200.CrossRefGoogle Scholar
  17. Ciuffreda, K. J., and Rumpf, D., 1985, Contrast and accommodation in amblyopia, Vis. Res. 25: 1445–1457.CrossRefGoogle Scholar
  18. D’Azzo, J. D., and Houpis, C. H., 1988, Linear Control System Analysis and Design, Conventional and Modern, McGraw Hill, New York, pp. 209–251.Google Scholar
  19. Fincham, E. F., 1951, The accommodation reflex and its stimulus, Br. J. Ophthalmol. 35: 381–393.CrossRefGoogle Scholar
  20. Fisher, S. K., and Ciuffreda, K. J., and Bird, J. E., 1990, The effect of stimulus duration on tonic accommodation and tonic vergence, Optom. Vis. Sci. 67: 441–449.CrossRefGoogle Scholar
  21. Fujii, K., Kondo, K., and Kasai, T., 1970, An analysis of the human eye accommodation system, Osaka Univ. Tech. Report No. 925, Vol. 20, pp. 221–236.Google Scholar
  22. Gamlin, P. D. R., 1999, Subcortical neural circuits for ocular accommodation and vergence in primates, Ophthal. Physiol. Opt. 19: 81–89.CrossRefGoogle Scholar
  23. Gilmartin, B., and Hogan, R. E., 1985, The relationship between tonic accommodation and ciliary muscle innervation, Invest. Ophthal. Vis. Sci. 26: 1024–1028.Google Scholar
  24. Gray, L. S., Winn, B., and Gilmartin, B., 1993, Accommodative fluctuations and pupil diameter, Vis. Res. 33: 2083–2090.CrossRefGoogle Scholar
  25. Harrison, R. J., 1987, Loss of fusional vergence with partial loss of accommodative convergence and accommodation following head injury, Bino. Vis. 2: 93–100.Google Scholar
  26. Heath, G. G., 1956; Components of accommodation, Am. J. Optom. Arch. Am. Acad. Optom. 33: 569–579.CrossRefGoogle Scholar
  27. Heath, G. G., 1956b, The influence of visual acuity on accommodative responses of the eye, Am. J. Optom. Arch. Am. Acad. Optom. 33: 513–524.CrossRefGoogle Scholar
  28. Helmholtz, H., 1855, Uber die Accommodation des Auges, Albrecht v. Graefes Arch. Ophthal. 1: 1–74.CrossRefGoogle Scholar
  29. Hess, C., 1904, Observations concerning accommodation organs, Klin. Mbl. Augenheilk., 42: 309–315.Google Scholar
  30. Hokoda, S. C., and Ciuffreda, K. J., 1983, Theoretical and clinical importance of proximal vergence and accommodation, in: Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor, and K. J. Ciuffreda, eds., Butterworths, Boston, pp. 75–97.Google Scholar
  31. Hung, G. K., 1998, Sensitivitiy analysis of the stimulus/response function of a static nonlinear accommodation model, IEEE Trans. Biomed. Engin. 45: 335–341.CrossRefGoogle Scholar
  32. Hung, G. K., 1992, Adaptation model of accommodation and vergence, Ophthal. Physiol. Opt., 12: 319–326.CrossRefGoogle Scholar
  33. Hung, G. K., 1997, Quantitative analysis of the accommodative convergence to accommodation ratio: linear and nonlinear static models, IEEE Trans. Biomed. Engin., 44: 306–316.CrossRefGoogle Scholar
  34. Hung, G. K., 1998, Dynamic model of the vergence eye movement system: simulation using MATLAB/SIMULINK, Comp. Meth. Prog. Biomed. 55: 59–68.CrossRefGoogle Scholar
  35. Hung, G. K., Semmlow, J. L., and Ciuffreda, K. J., 1986, A dual-mode dynamic model of the vergence eye movement system, IEEE Trans. Biomed. Engin. 33: 1021–1028.CrossRefGoogle Scholar
  36. Hung, G. K., and Ciuffreda, K. J., 1988, Dual-mode behaviour in the human accommodation system, Ophthal. Physiol. Opt. 8: 327–332.CrossRefGoogle Scholar
  37. Hung, G. K., and Ciuffreda, K. J., 1991, Model of accommodation after sustained near focus, °peon Vis. Sei., 68: 617–623.Google Scholar
  38. Hung, G. K., and Ciuffreda, K. J., 1999a, Adaptation model of nearwork-induced transient myopia, Ophthal. Physiol. Opt. 19: 151–158.CrossRefGoogle Scholar
  39. Hung, G. K., and Ciuffreda, K. J., 1999b, Model of human refractive error development Curr. Eye Res. 19: 41–52.CrossRefGoogle Scholar
  40. Hung, G., K., Ciuffreda, K. J., and Rosenfield, M., 1996, Proximal contribution to a linear static model of accommodation and vergence, Ophthal. Physiol. Opt. 16: 31–41.CrossRefGoogle Scholar
  41. Hung, G. K., Ciuffreda, K. J., Semmlow, J. L., and Hokoda, S. C., 1983, Model of static accommodative behavior in human amblyopia, IEEE Trans. Blamed. Engin. 30: 665–672.CrossRefGoogle Scholar
  42. Hung, G. K. and Semmlow, J. L., 1980, Static behavior of accommodation and vergence: computer simulation of an interactive dual-feedback system, IEEE. Trans. Biomed. Eng. 27: 439–447.CrossRefGoogle Scholar
  43. Hung, G. K., Semmlow, J. L., and Ciuffreda, K. J., 1982, Accommodative oscillation can enhance average accommodative response: a simulation study, IEEE Trans. Sys. Man Cyber. 12: 594–598.CrossRefGoogle Scholar
  44. Hung, G. K., Semmlow, J. L., and Ciuffreda, K. J., 1986, A dual-mode dynamic model of the vergence eye movement system, IEEE Trans. Blamed. Engin. 33: 1021–1028CrossRefGoogle Scholar
  45. Jampel, R. S., 1959, Representation of the near-response on the cerebral cortex of the macaque, Am. J. Ophthal. 48: 573–582.Google Scholar
  46. Jiang, B.-C., 2000, A modified control model for steady-state accommodation, in: Accommodation and Vergence Mechanisms in the Visual System, O. Franzén, H. Richter, and L. Stark, eds., BirkhAuser Verlag, Basel, Switzerland, pp. 235–243.CrossRefGoogle Scholar
  47. Johnson, C. A., 1976, Effects of luminance and stimulus distance on accommodation and visual resolution, J. Opt. Soc. Am. 66: 138–142.CrossRefGoogle Scholar
  48. Kasai T., Unno, M., Fujii. K., Sekiguchi, M., Shinohara, K., 1971, Dynamic characteristics of human eye accommodation system, Osaka Univ. Tech. Report, Vol. 21, pg. 569.Google Scholar
  49. Kaufman, P. L., 1992, Accoinnlodation and presbyopia. Neuromuscular and biophysical aspects, in: Adleer’s Physiology of the Eye, 9th Ed., W. M. Hart, ed., Mosby-Year Book, St. Louis, MO., pg. 397.Google Scholar
  50. Krall, A. M., and Fornaro, R., 1967, An algorithm for generating root locus diagrams, Commun. of the Assoc. on Computing Machinery. 10: 186–188.MATHGoogle Scholar
  51. Khosroyani, M., 2000, Computer Simulation of Ocular Accommodation and Vergence Models. M. S. Thesis. Tarbiat Modarres University, Tehran, Iran.Google Scholar
  52. Krishnan, V. V., and Stark, L., 1975, Integral control in accommodation, Comp. Prog. Blamed. 4: 237–255.CrossRefGoogle Scholar
  53. Liebowitz, H. W., and Owens, D. S., 1978, New evidence for the intermediate position of relaxed accommodation, Doc. Ophthalmol. 46: 133–147.Google Scholar
  54. Mays, L. E., and Gamlin, P. D. R.., 2000, Neuronal circuits for accommodation and vergence in primates, in: Accommodation and Vergence Mechanisms in the Visual System, O. Franzén, H. Richter, and L. Stark, eds., BirIchauser Verl, Basel, Switzerland, pp. 1–9.CrossRefGoogle Scholar
  55. Mordi, J. A., and Ciuffreda, K. J., 1998, Static aspects of accommodation: age and presbyopia, Vis. Res. 38: 1643–1653.CrossRefGoogle Scholar
  56. Morgan, M. W., 1957, The resting state of accommodation, Am. J. Optom. Arch. Am. Acad. Optom. 34: 347–353.CrossRefGoogle Scholar
  57. Morgan, M. W., 1968, Accommodation and vergence, Am. J. Optom. Arch. Am. Acad. Optom. 45: 417–454.CrossRefGoogle Scholar
  58. Moses, R. A., ed., 1981, Adler ‘s Physiology of the Eye, Clinical Applications, C. V. Mosby Co., St. Louis, pp 440–455.Google Scholar
  59. Neveu, C., and Stark, L., 1995, Hysteresis in accommodation, Ophthal. Physiol. Opt. 15: 207–216.CrossRefGoogle Scholar
  60. Ohtsuka, K., Maekawa, H., Takeda, M., Uede, N., and Chiba, S., 1988, Accommodation and convergence insufficiency with left middle cerebral artery occlusion, Am. J. Ophthalmol. 105: 60–64.Google Scholar
  61. O’Neill, W. D., 1969, An interactive control systems analysis of the human lens accommodative controller, Automatica. 5: 645–654.CrossRefGoogle Scholar
  62. Ong, E., and Ciuffreda, K. J., 1995, Nearwork-induced transient myopia-a critical review, Doc. Ophthalmol. 91: 57–85.CrossRefGoogle Scholar
  63. Ong, E., and Ciuffreda, K. J., 1997, Accommodation, Nearwork, and Myopia, Optometric Extension Program Foundation, Inc., Santa Ana, CA.Google Scholar
  64. Optican, L M., and Miles, F. A., 1985, Visually induced adaptive changes in primate saccadic oculomotor control signals, J. Neurophysiol. 54: 940–958.Google Scholar
  65. Panum, P. L, 1858, Physiologische Untersuchungen uber das Sehen mit zwei Augen, Schwersche Buchhandlung, Kiel, Germany.Google Scholar
  66. Phillips, S. R., 1974, Ocular Neurological Control Systems: Accommodation and the Near Response Triad, Ph.D. Dissertation, Dept. of Mechanical Engin., Univ. of Calif., Berkeley, CA, U.S.A.Google Scholar
  67. Provine, R. R., and Enoch, J. M., 1975, On voluntary ocular accommodation, Percept. Psychophys. 17: 209–212.CrossRefGoogle Scholar
  68. Ripps, H., Chin, N. B., Siegel, I. M., and Breinin, G. M., 1962, The effect of pupil size on accommodation, convergence, and the AC/A ratio, Invest. Ophthal. Vis. Sci. 1: 127–135.Google Scholar
  69. Rosenfield, M., Ciuffreda, K. J., Hung, G. K., 1991, The linearity of proximally induced accommodation and vergence, Invest. Ophthal. Vis. Sci. 32: 2985–2991.Google Scholar
  70. Rosenfield, M., Ciuffreda, K. J., Hung, G. K., and Gilmartin, B., 1993, Tonic accommodation: a review. I. Basic aspects, Ophthal. Physiol. Opt. 13: 266–284.CrossRefGoogle Scholar
  71. Rosenfield, M., Ciuffreda, K. J., Hung, G. K., and Gilmartin, B., 1994, Tonic accommodation: a review. II. Accommodative adaptation and clinical aspects, Ophthal. Physiol. Opt. 14: 265–277.CrossRefGoogle Scholar
  72. Rosenfield, M., and Gilmartin, B., 1989, Temporal aspects of accommodative adaptation, Optom. Vis. Sc 66: 229–234.CrossRefGoogle Scholar
  73. Saladin, J. J. and Stark, L., 1975, Presbyopia: a new evidence from impedance cyclography supporting the Hess-Gullstrand theory, Vis. Res. 15: 537–541.CrossRefGoogle Scholar
  74. Stark, L., 1987, Presbyopia in light of accommodation, in Presbyopia, Recent Research and Reviews from the Third International Symposium, L. Stark, and G. Obrecht, eds, Professional Press, New York, pp. 264–274.Google Scholar
  75. Stark, L., Kong., R., Schwartz, S., and Hendry, D., 1976, Saccadic suppression of image displacement, Vis. Res. 16: 1185–1187.Google Scholar
  76. Stark, L. W., Neveu, C. and Krishnan, V. V., 2000, Mode switching in control of accommodation, in: Accommodation and Vergence Mechanisms in the Visual System, O. Franzén, H. Richter, and L. Stark, eds., Birkhäuser Verlag, Basel, Switzerland, pp. 225–234.CrossRefGoogle Scholar
  77. Stark, L., and Takahashi, Y., 1962, Accommodative tracking, Quart. Prog. Rept, Res. Lab. of Electronics, M.I.T. 67: 220.Google Scholar
  78. Stark, L., Takahashi, Y., and Zames, G. 1962, The dynamics of the human lens system, Quart. Prog. Rept., Res. Lab. of Electronics, MIT. 66: 337.Google Scholar
  79. Stark, L., Takahashi, Y., and Zames, G. 1965. Nonlinear servo-analysis of human lens accommodation. IEEE Trans. Sys. Sci. Cyber. 1: 75–83.CrossRefGoogle Scholar
  80. Sun, F., and Stark, L., 1990, Switching control of accommodation: experimental and simulation responses to ramp inputs, IEEE Trans. Biomed. Engin. 37: 73–79.CrossRefGoogle Scholar
  81. Thompson, H. E., 1975, The Dynamics of Accommodation in Primates, Ph.D. dissertation, Dept. of Biomed. Engin., Univ. of Illinois Medical Center, Chicago, IL.Google Scholar
  82. Toates, F. M., 1972a, Accommodation function of the human eye, Physiol. Reviews. 52: 828–863.Google Scholar
  83. Toates, F. M., 1972b, Studies on the control of accommodation and convergence, Measurement and Control. 5: 58: 61.Google Scholar
  84. Tucker, J., and Charman, W. N., Reaction and response times for accommodation, Am. Optom. Physiol. Opt. 56: 490–503.Google Scholar
  85. Warwick, R., 1954, The ocular parasympathetic nerve supply and its mesencenphalic sources, J. Anat., Lond. 88: 71–93.Google Scholar
  86. Westheimer, G., 1963, Amphetamines, barbiturates and accommodative convergence, Arch. Ophthalmol. 70: 830–836.CrossRefGoogle Scholar
  87. Winn, B., Pugh, J. R., Gilmartin, B., and Owens, H., 1990, Arterial pulse modulates steady-state ocular accommodation, Curr. Eye Res. 9: 971–974.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • George K. Hung
    • 1
  • Kenneth J. Ciuffreda
    • 2
  • Madjid Khosroyani
    • 3
  • Bai-Chuan Jiang
    • 4
  1. 1.Dept. of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Dept. of Vision SciencesState University of New York, State College of OptometryNew YorkUSA
  3. 3.Tarbiat Modarres UniversityTehranIran
  4. 4.College of Optometry, Health Professions DivisionNova Southeastern UniversityFt. LauderdaleUSA

Personalised recommendations