Beyond Classical Retinotopy: Striate Cortical Mechanisms Associated with Voluntary Saccades and Attention

  • Iván Bódis-Wollner
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)

Abstract

Most traditional models of visual attention and eye movements consider the visual primary cortex (V1) simply as a way-station between the retina and the brain whose purpose is to provide information about the location and elementary feature of visual stimuli. Current evidence suggests, however, that visual information is modified in V1 by visual context, spatial attention and by eye movement contingent spatial rescaling.

Keywords

Transcranial Magnetic Stimulation Visual Cortex Receptive Field Superior Colliculus Primary Visual Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A. P., and Eberle, L., 1989, Suppression of visual perception by magnetic coil stimulation of human occipital cortex, Electroencephalogr. Clin.. Neuropphysiol. 74: 458–62.Google Scholar
  2. Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A. P., and Eberle, L., 1998, Transcranial magnetic stimulation in study of the visual pathway, J. Clinical Neurophysiol. 15: 288–304.Google Scholar
  3. Andersen, R. A., 1989, Visual and eye movement functions of the posterior parietal cortex, Annu. Rev. Neurosci. 12: 377–403.Google Scholar
  4. Andersen, R. A.., 1995, Encoding of intention and spatial location in posterior parietal cortex, Cereb. Cortex. 5: 457–469.Google Scholar
  5. Beckers, G., Canavan, A. G. M., Zangemeister, W. H., and HBmberg, V., 1992, Transcranial magnetic stimulation of human frontal and parietal cortex impairs programming of periodic saccades, Neuro-ophthalmol. 12: 289–295.Google Scholar
  6. Benevento, L. A., and Port, J. D., 1995, Single neurons with both form/color differential responses and saccade-related responses in the nonretinotopic pulvinar of the behaving monkey, Vis Neurosci. 12: 523–44.Google Scholar
  7. Berg, P., and Scherg, M., 1991, Dipole models of eye movements and blinks, Electroenceph. Clin. Neurophysiol. 79: 36–44.Google Scholar
  8. Berman, R. A., Colby, C. L., Genovese, C. R., Voyvodic, J. T., Luna, B., Thulbom, K. R., and Sweeney, J. A., 1999, Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study, Human Brain Mapping. 8: 209–225.Google Scholar
  9. Boch, R. A., and Goldberg, M. E.., 1989, Participation of prefrontal neuron’s in the preparation of visually guided eye movements in the rhesus monkey, J. Neurophysiol. 61: 1064–1084.Google Scholar
  10. B6dis-Wollner, I.., 1973, A distractive effect of peripheral attention on foveal trigram recognition, Perception. 2: 407–413.Google Scholar
  11. Bddis-Wollner, I., Atkin, A., Wolkstein, M., and Raab, E., 1977, Visual association cortex and vision in man: pattern evoked occipital potentials in a blind boy, Science. 198: 629631.Google Scholar
  12. Bôdis-Wollner, I., Barris,M. C., Mylin, L. H., Julesz, B., and Kropfl. W., 1981, Binocular stimulation reveals cortical components of the human visual evoked potential, Electroencephalography and Clin. Neurophysiol. 52: 298–305.Google Scholar
  13. Btidis-Wollner, I., Bucher, S. F., Seelos, K. C., Paulus, W., Reiser, M., and Oertel, W. H.., 1997, Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades, Neurology. 49: 416–420.Google Scholar
  14. Bddis-Wollner, I., Bucher, S. F., and Seelos, K. C., 1999, Cortical activation patterns during voluntary blinks and voluntary saccades, Neurology. 53: 1800–1805.Google Scholar
  15. B6dis-Wollner, I., Mylin, L., and Frkovic, S., 1989, The topography of the N70 component of the visual evoked potential in humans, in: Topographic Brain Mapping of EEG and Evoked Potentials. (ed), Springer-Verlag, Berlin and Heidelberg, pp. 396–406.Google Scholar
  16. B6dis-Wollner, I., Pollen, D. A., and Ronner, S., 1976, Responses of complex cells in the visual cortex of the cat as a function of the length of moving slits, Brain Res. 116: 205216.Google Scholar
  17. Brandt, S. A., Planer C. J., Meyer B.-U, Leistner S., and Villringer. A., 1998, Effects of repetitive transcranial magnetic stimulation over dorsolateral prefrontal and posterior parietal cortex on memory-guided saccades, andpt. Brain Research. 118: 197–204.Google Scholar
  18. Brefczynski, J. A., and DeYoe, E. A., 1999, A physiological correlate of the ‘spotlight’ of Visual attention, Nature Neuroscience. 2: 370–374.Google Scholar
  19. Breitmeyer, B. G., and Ganz, L., 1976, Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing, Psychological Review. 83: 1–36.Google Scholar
  20. Breitmeyer, B. G., 1978, Disinhibition in metacontrast masking of vernier acuity targets: sustained channels inhibit transient channels, Vis. Res. 18: 1401–1405.Google Scholar
  21. Brindley, G. S., 1973, Sensory effects of electrical stimulation of the visual and paravisual cortex in man, in: Visual Centers in the Brain. Springer-Verlag, Chap. 8, pp. 583–594.Google Scholar
  22. Broadbent, D. A., 1958, Perception and Communication, Pergamon Press, New York. Bilchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., and Friston, K. J., 1998, The functional anatomy of attention to visual motion. A functional MRI study, Brain. 121: 1281–1294.Google Scholar
  23. Burr, D. C., Morrone, M. C., and Ross, J., 1994, Selective suppression of the magnocellular visual pathway during saccadic eye movements, Nature. 371: 511–513.Google Scholar
  24. Carter, N., and Zee, D. S., 1997, The anatomical localization of saccades using functional imaging studies and transcranial magnetic stimulation, Current Opinion in Neurology. 10: 10–17.Google Scholar
  25. Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R., 1993, A neural basis for visual search in inferior temporal cortex, Nature. 363: 345–347.Google Scholar
  26. Clark,J. J., 1999, Spatial attention and latencies of saccadic eye movements, Vis. Res. 39: 585–602.Google Scholar
  27. Clarke, S., and Mildossy, J., 1990, Occipital cortex in man: organization of callosal onnections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J. Comp. Neurol. 298: 188–214.Google Scholar
  28. Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 1993, The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals, Prog. Brain. Res. 95: 307–316.Google Scholar
  29. Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 1996, Visual, persaccadic and cognitive activation of single neurons in monkey lateral intraparietal area, J. Neurophysiol. 76: 2841–52.Google Scholar
  30. Colby, C. L., and Goldberg, M. E.., 1999, Space and attention in parietal cortex, Ann. Rev. Neurosci. 22: 319–49.Google Scholar
  31. Collewijn, H., Van Deer Steen, J., and Steinman, R. M., 1985, Human eye movements associated with blinks and prolonged eyelid closure, J. Neurophysiol. 54: 11–27.Google Scholar
  32. Corbetta, M., 1998, Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. NatL Acad. Sci. 95: 831–838.Google Scholar
  33. Corbetta, M., Akbudak, E., Cantu°, T. E., Snyder, A. Z., 011inger, J. M., Drury, H. A., Linenweber, M. R., Petersen, S. E., Raichle, M. E., Van Essen, D. C., and Shulman, G. L.., 1998, A common network of functional areas for attention and eye movements, Neuron. 21: 761–773.Google Scholar
  34. Corbetta, M., Kincade, M. J., 011inger, J. M., McAvoy, M. P., Akbudak, E., Conturo, T.E., Snyder, A. Z., Petersen, S.E., and Shulman, G. L., 1999, Event-related fMRI of visuospatial attention: Cue, delay, and validity effects, 6.4 Soc. for Neurosci. 25: 1.Google Scholar
  35. Crick, F., 1984, Function of the thalamic reticular complex. The searchlight hypothesis, Proc. Natl. Acad. Sci. 81: 4586–4590.Google Scholar
  36. Crick, F., and Koch, C., 1995a, Are we aware of neural activity in primary visual cortex? Nature. 375: 121–123.Google Scholar
  37. Crick, F., and Koch, C., 1995b, Cortical areas in visual awareness, Nature. 377: 293–295. Daubechies, I., 1990, The wavelet transform, time-frequency localization and signal analysis, IEEE 7’rans. Inform. Theory. 36: 961–1004.Google Scholar
  38. Diamond, M. E., Armstrong-Jones, M., Budway, M. J., and Ebner, F. F., 1992, Somatic sensory responses in the rostral sector of the posterior group (Porn) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barriel field cortex, J. Comp. Neurol. 319: 66–84.Google Scholar
  39. Dublier, R., and Zeki, S. M., 1971, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res. 35: 528–532.Google Scholar
  40. Duffy, F. H., and Burchfiel, J. L., 1975, Eye movement-related inhibition of primate neurons, Brain Res. 89: 121–132.Google Scholar
  41. Duncan, J., 1984, Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113: 501–517.Google Scholar
  42. Eckhorn, R, Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and Reitboeck, H. J.., 1988, Coherent oscilliations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat, Biol. Cybern. 60: 121–130.Google Scholar
  43. Eckhorn, R, Frien, A., Bauer, R., Woelbem, T., and Kehr, H.., 1993, High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey, Neuro. Report. 4: 243–246.Google Scholar
  44. Engel, S. A., Glover, G. H., and Wandel!, B. A., 1997, Retinotopic organization in human visual cortex and the spatial precision of functional MRI, Cerebral Cortex. 7: 181–192.Google Scholar
  45. Everling, S., and Fischer, B., 1998, The antisaccade: a review of basic research and clinical studies, Neuropsychologia. 36: 885–899.Google Scholar
  46. Evinger, C., Manning, K. A., and Pellegrini, J. J., et al., 1994, Not looking while leaping: the linkage of blinking and saccadic gaze shifts, Exp. Brain Res. 100: 337–344.Google Scholar
  47. Fischer, B., Boch, R., and Bach, M., 1981, Stimulus versus eye movements comparisons of neural activity in the striate and prelunate visual cortex (A17 and A19) of the trained rhesus monkey, E. Brain Res. 43: 69–77.Google Scholar
  48. Fischer, W. H., Schmidt, M., Stuphom, V., and Hoffman, K. P., 1996, Response properties of relay cells in the A-laminae of the cat’s dorsal lateral geniculate nucleus after saccades, Exp. Brain Res. 110: 435–445.Google Scholar
  49. Fletcher, P. C., Frith, C. D., Baker, S. C., Shallice, T., Frackowiak, R. S. J., and Dolan, R. J., 1995, The mind’s eye-precuneus activation in memory-related imagery, Neuroimage. 2: 195–200Google Scholar
  50. Fogarty, C., and Stem, J., 1989, Eye movements and blinks: their relationship to higher cognitive processes, Int. J. PsychophysioL 8: 35–42.Google Scholar
  51. FunahsAi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1989, Mnemonic coding of visual space in the monkey’s dorslateral prefrontal cortex, J. Neurophysiol. 61: 331–349.Google Scholar
  52. Galambos, R., 1955, Suppression of the auditory wave activity by stimulation of efferent fibers to the cochlea, Fed. Proc. 14: 53.Google Scholar
  53. Gancarz, G., and Grossberg, S., 1999, A neural model of saccadic eye movement control explains task-specific adaptation, Vis. Res. 39: 3123–3143.Google Scholar
  54. Gentle, A., and Rushell, G., 1997, Pathway of the primary afferent nerve fibers serving proprioception in monkey extraocular muscles, Ophthal. Physiol. Opt. 17: 225–231.Google Scholar
  55. Ghandi, S. P., Heeger, D. J., and Boynton, G. M.., 1999, Spatial attention affects brain activity in human primary visual cortex, Biological Sciences Proc. Natl. Acad. Sci. 96: 33 14–33 19Google Scholar
  56. Ghosh, S., Murray, G. M., Turman, A. B., and Rowe, M. J., 1994, Corticothalamic influences on transmission of tactile information in the ventroposterolateral thalamus of the cat: effect of reversible inactivation of somatosensory cortical areas I and II, Exp Brain Res. 100: 276–286.Google Scholar
  57. Gaymard, B., Ploner, C. J., Rivaud, S., Vermersch, A. L, and Pierrot-Deseilligny, C., 1998, Cortical control of saccades, Exp Brain Res. 123: 159–163.Google Scholar
  58. Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neuroscience. 3: 1116–1133.Google Scholar
  59. Gilbert, C. D., and Wiesel, T. N., 1990, The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex, Vis. Res. 30: 1689–1701.Google Scholar
  60. Gray, C. M., Konig, P., Engel, A. K., and Singer, W.., 1989, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature. 338: 334–336.Google Scholar
  61. Greenlee, M. W., 2000, Human cortical areas underlying the perception of optic flow: Brain Imaging Studies, International Review of Neurobiology. 44: 269–292.Google Scholar
  62. Grindley, G. C., and Townsend, V., 1968, Voluntary attention in peripheral vision and its effect on acuity and differential thresholds, Q. J. Exp Psycho!. 20: 11–19.Google Scholar
  63. Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, R., 1994, Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, Neurosci. 14: 2545–2568.Google Scholar
  64. Gross, C. G., 1991, Contribution of striate cortex and superior colliculus to visual function in area MT, the superior temporal polysensory area and inferior temporal cortex, Neuropsychologia. 29: 497–515.Google Scholar
  65. Grossberg, S., and Raizada, R. D. S., 2000, Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex, Vis. Res. 40: 1413–1432.Google Scholar
  66. Guthrie, B. L., Porter, J. D., and Sparks, D. L., 1983, Corollary discharge provides accurate eye position information to the oculomotor system, Science. 221: 1193–1195.Google Scholar
  67. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., and Tootell, R. B., 1998, Retinotopy and color sensitivity in human visual cortical area V8, Nature Neurosci. 1: 235–241.Google Scholar
  68. Haenny, P. E., and Schiller, P. H., 1988, State dependent activity in monkey visual cortex. I single cell activity in VI and V4 on visual tasks, Exp. Brain Res. 69: 245–259.Google Scholar
  69. Haupé, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., and Bullier, J., 1998, Cortical feedback improves discrimination between figure and background by V 1, V2 and V3 neurons, Nature. 394: 784–787.Google Scholar
  70. He, P., and Kowler, E., 1989, The role location probability in the programming of saccades: Implications for ‘center-of-gravity’ tendencies, Vis. Res. 29: 1165–1181.Google Scholar
  71. He, P., and Kowler, E., 1991, Saccadic localization of eccentric forms, J. Opt. Soc. Am. 8: 440–449.Google Scholar
  72. He, S., Cavanagh, P., and Intriligator, J., 1996, Attentional resolution and the locus of visual awareness, Nature, 383: 334–337.Google Scholar
  73. Helmholtz, H. v., 1866, Handbuch der Physiologischen Optik, in A Treatise on Physiological Optics, J. P. C. Southall, ed. with translation, 1963, Dover, New York.Google Scholar
  74. Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., and Crawford, J. D., 1998, Gaze-centered remapping of remembered visual space in an open-loop pointing task, J. Neuroscience. 18: 1583–94.Google Scholar
  75. Hillyard, S. A., Hinrichs, H., Tempelmann, C., Morgan, S. T., Hansen, J. C., Scheich, H., andGoogle Scholar
  76. Heinze, H.-J., 1997, Combining steady-state visual evoked potentials and fMRI toGoogle Scholar
  77. Localize brain activity during selective attention, Hum. Brain Mapping. 5: 287–292.Google Scholar
  78. Holland, M. K., and Tarlow, G., 1972, Blinking and neural load, Psych Reports. 31: 119–127.Google Scholar
  79. Holland, M. K., and Tarlow, G., 1975, Blinking and thinking, Perceptual and Motor Skills, 41: 303–306.Google Scholar
  80. Honda, H., 1999, Modification of saccade-contingent visual mislocalization by the presence of visual frame of reference, Vis. Res. 39: 51–57.Google Scholar
  81. Hung, G. K., Sun, L., Semmlow, J. L., and Ciuffreda, K.J., 1990, Suppression of sensitivity to change in target disparity during vergence eye movements, Exp. Neurol. 110: 291–297.Google Scholar
  82. Hung, G., Hsu, F., and Stark, L., 1977, Dynamics of the human eye blink, Am. I Opt. Physiol. Opt.. 54: 678–690.Google Scholar
  83. g, U. J., and Their, P., 1999, Eye movements of rhesus monkeys directed towards imaginary targets, Vis. Res. 39: 2143–2150.Google Scholar
  84. Ito, M., and Gilbert, C. D., 1999, Attention modulates contextual influences in the primary visual cortex of alert monkeys, Neuron. 22: 593–604.Google Scholar
  85. Ito, M., Westheimer, G., and Gilbert, C. D., 1998, Attention and perceptual learning modulate contextual influences on visual perception, Neuron. 20: 1191–1197.Google Scholar
  86. Joseph, J. P., and Barone, P., 1987, Prefrontal unit activity during a delayed oculomotor task in the monkey, Exp. Brain Res. 67: 460–468.Google Scholar
  87. Kamitani, Y., and Shimojo, S., 1999, Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex, Nature Neurosci. 2: 767–771.Google Scholar
  88. Kapadia, M. K., Ito, M., Gilbert, C. D., and Westheimer, G., 1995, Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in VI of alert monkeys, Neuron. 15: 843–856.Google Scholar
  89. Kapadia, M. K., Westheimer, G., and Gilbert, C. D., 1999, Dynamics of spatial summation in primary visual cortex of alert monkeys, Proc. Nat. Acad.Sci. 96: 12073–12078.Google Scholar
  90. Kapoula, Z., Isotalo, E., Bocci, M. P., Rivaud-Péchoux, Mifri R., Gaymard, B., Leboucher, P., and Pierrot-Desseilligny., 1999, Transcranial magentics stimulation (TMS) of the parietal cortex: effect on the latency of saccades vergence and combined eye movements, 221.3 Soc.for Neurosci. 25: 545.Google Scholar
  91. Kastner, S., Nothdurft, H.-C., and Pigarev, I. N.., 1997, Neural correlates of pop-out in cat striate cortex, Vis. Res. 37: 371–376.Google Scholar
  92. Kastner, S., Pinsk, M., Desimone, R., and Ungerleider, L.G., 1999, Directed attention increases activity in human visual cortex in the absence of visual stimulation, 6.2 Soc. for Neuruosci.. 25: 1.Google Scholar
  93. Keating, E. G., Gooley, S. G., Pratt, S., and Kelsey, J., 1983, Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields, Brain and Research. 269: 145–148.Google Scholar
  94. Kennedy, H., and Bullier, J., 1985, A double-labelling investigation of the afferent connectivity to cortical areas VI and V2 of the macaque monkey, J Neurosci. 5: 2815–2830.Google Scholar
  95. Kowler, E., Anderson, E., Dosher, B., and Blaser, E., 1995, The role of attention in the programming of saccades, Vis. Res. 35: 1897–1916.Google Scholar
  96. Kruse, W., and Eckhorn, R., 1996, Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex, Proc Nail Acad Sci USA. 93: 6112–6117.Google Scholar
  97. Kusunoki, M., Gottlieb, J., and Goldberg, M., 2000, The lateral intraparietal area as a saliencemap: the representation of abrupt onset, stimulus motion, and task relevance, Vis. Res. 40: 1459–1468.Google Scholar
  98. LaBerge, D., 1983, Spatial extent of attention to letters and words, J Exp. Psychol. Hum. Precept. Perform. 9: 371–379.Google Scholar
  99. LaBerge D, and Buchsbaum MS., 1990, Position emission tomographic measurements of pulvinar activity during an attention task, J Neurosci. 10: 613–619.Google Scholar
  100. Lalli, S., Ayub, A., Ahmad, A., Hussain, Z., Cracco, R. Q., BOdis-Wollner, I., and Amassian, V. E., 2000, Cued saccades and antisaccades depend on calcarine cortex, J Physiol. 526: 153–154.Google Scholar
  101. Lamme, V. A. F., Supèr, H., Landman, R., Roelfsema, P. R., and Spekreijse, H., 2000, The role of primary visual cortex ( V1) in visual awareness, Vis. Res. 40: 1507–1521.Google Scholar
  102. Lamme, V. A. F., 1995, The neurophysiology of figure-ground segregation in primary visual cortex, J. Neurosci. 15: 1605–1615.Google Scholar
  103. Lamme, V. A. F., and Roelfsema, P. R., 2000, The distinct modes of vision offered by feedforward and recurrent processing, Trends. Neurosci. 23: 571–579.Google Scholar
  104. Latour, P. L., 1962, Vision during voluntary saccadic eye movements, Vis. Res. 2: 261–262.Google Scholar
  105. Law, I., Svarer, C., Holm, S., and Paulson, O. B., 1997, The activation pattern in normal humans during suppression, imagination, and performance of saccadic eye movements, Acta Physiol. Scand. 161: 419–434.Google Scholar
  106. Law, I., Svarer, C., Rostrup, E., and Paulson, O. B., 1998, Parieto-occipital cortex activation during self-generated eye movements in the dark, Brain. 121: 2189–2200.Google Scholar
  107. Le Bihan, D., Turner, R., Zeffiro, T. A., Cuénod, Jezzard, P., and Bonnerot, V., 1993, Activation of human primary visual cortex during visual recall: A magnetic resonance imaging study, Neurobiology. 90: 11802–11805.Google Scholar
  108. Le, T. H., Pardo, J. V., and Hu, X., 1998, 4 T-fMRI Study of nonspatial shifting of selective attention: cerebellar and parietal contributions, J. Neurophysiol. 79: 1535–1548.Google Scholar
  109. Lee, T. S., Mumford, D., Romero, R., and Lamme, V. A. F., 1998, The role of the primary visual cortex in higher level vision, Vis. Res. 38: 2429–2454.Google Scholar
  110. Leigh, R J, and Zee, D. S., 1999, The Neurology of Eye Movements. Third edition, Oxford University Press.Google Scholar
  111. Li, C.-Y., and Li, W., 1994, Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons-classification and tuning properties, Vis. Res. 34: 2337–2355.Google Scholar
  112. Lins, O. G., Picton, T. W., Berg, P., and Scherg, M., 1993, Ocular artifacts in recording EEGs and event-related potentials II: source dipoles and source components, Brain Topogr. 6: 65–78.Google Scholar
  113. Luck, S. J., Chelazzi, L., Hillyard, S. A., and Desimone, R., 1997, Neural Mechanisms of spatial selective attention in areas VI, V2 and V4 of Macaque visual cortex, J. Neurophysiol 77: 24–42.Google Scholar
  114. Maffei, L., and Fiorentini, A., 1976, The unresponsive regions of visual cortical receptive fields„Vis. Res. 16: 1131–1139.Google Scholar
  115. Mallat, S., 1989, A theory for multi-resolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intel. 11: 674–693.Google Scholar
  116. Mangun, G. R., Hopfinger, J. B., Kussmaul, C. L., Fletcher, E. M., and Heinze, H.-J., 1997, Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex, Human Brain Mapping. 5: 273–279.Google Scholar
  117. Mari, Z., Mima, T., Gerloff, C., Hallett, M., and B6dis-Wollner, I., 2000, Perisaccadic high frequency EEG changes in frontal and occipital regions are similar in light and dark,.1 Physiology (London). 526P: 25S.Google Scholar
  118. Martinez-Conde, S., Macknik, S. L., and Hubel, D. H.., 2000, Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys, Nature Neuroscience. 3: 251–258.Google Scholar
  119. Maunsell, J. H. R., and Gibson, J. R.., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 68: 1332–1344.Google Scholar
  120. McClurkin, J. W., Optican, L. M., and Richmond, B. J., 1994, Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons, Visual Neurosci. 11: 601–617.Google Scholar
  121. McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neural. 305: 370–392.Google Scholar
  122. McElwain, J.T., 1964, Receptive fields of optic tract axons and lateral geniculate cells:Peripheral, extent and barbiturate sensitivity, J. Neurophysiol. 27: 1154–1173.Google Scholar
  123. McIlwain, J. T., 1966, Some evidence concerning the physiological basis of the periphery effect in the cat’s retina, Exp. Brain Research. 1: 265–275.Google Scholar
  124. Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K., and Tootell, R. B., 1999, The representation of illusory and real contours in human cortical visual areas by functional magnetic resonace imaging, J. Neurosci. 19: 8560–8572.Google Scholar
  125. Meredith, M. A., and Stein, B. E., 1985, Descending efferents from the superior colliculus relay integrated multisensory information, Science. 8: 657–659.Google Scholar
  126. Merton, P. A., 1964, Absence of conscious position sense in the human eyes, in The Oculomotor System, M. Bender, ed., Hoeber Medical Division, Harper and Row Publishers, New York, Evanston and London, pp. 314–320.Google Scholar
  127. Meyer,B.-U., Diehl, R., Steinmetz, H., Britton, T. C., and Benecke, R.., 1991, Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements, Electroencephalogr. Clin. Neurophysiol. Suppl. 43: 121–134.Google Scholar
  128. Mignard, M., and Malpeli, J. G., 1991, Paths of information flow through visual cortex, Science. 251: 1249–1251.Google Scholar
  129. Mohler, C. W., and Wurtz, R. H., 1977, Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys, J. Neurophysiol. 40: 74–94.Google Scholar
  130. Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in the extrastriate cortex, Science. 229: 782–784.Google Scholar
  131. Moray, N., 1969, Attention Selective Processes in vision and hearing, Hutchinson Educational Ltd. London, Melbourne, Sydney, Auckland, Bombay, Toronto, Johannesburg and New York, pp. 1–194.Google Scholar
  132. Morrone, M. C., Ross, J., and Burr, D. C.., 1997, Apparent position of visual targets during real and simulated saccadic eye movements, J. Neurosci. 17: 7941–7953.Google Scholar
  133. Motter, B. C., 1993, Focal attention produces spatially selective processing in visual cortical areas VI, V2, and V4 in the presence of competing stimuli, J. Neurophysiol. 70: 909–919.Google Scholar
  134. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the monkey: command function for operations within extrapersonal space, J. Neurophysiol. 38: 871–908.Google Scholar
  135. Müri, R M., Iba-Zizen, M. T., Derosier, C., Cabanis, E. A., and Pierrot-Deseilligny, C., 1996, Location of the human posterior eye field with functional magnetic resonance imaging, J. Neurology, Neurosurgery and Psychiatry. 60: 445–448.Google Scholar
  136. Müri, R. M., Hess, C. W., and Meienberg, 0., 1991, Transcranial stimulation of the human frontal eye field by magnetic pulses, Exp. Brain Res. 86: 219–223.Google Scholar
  137. Naidich,T. P., and Brightbill, T. C., 1995, The intraparietal sulcus: a landmark for localization of pathology on axial CT scans, Int. J. Neuroradiol. 1: 3–16.Google Scholar
  138. Nelson, J. I., and Frost, B. J., 1978, Orientation-selective inhibition from beyond the classic visual receptive field, Brain Res. 139: 359–365.Google Scholar
  139. Niebur, E., Koch. C., and Rosin, C., 1993, An oscillation-based model for the neuronal basis of attention, Vis. Res. 18: 2789–2802.Google Scholar
  140. Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M. M., Frackowiak, R. S. J., and Frith, C. D., 1997, Functional localization of the system for visuospatial attention using positron emission tomography, Brain. 120: 515–533.Google Scholar
  141. Noda, H., 1975, Depression of the excitability of relay cells of lateral geniculate nucleus following saccadic eye movements in the cat, J. Physiol. 249: 87–102.Google Scholar
  142. Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey, Brain Res. 137: 343–350.Google Scholar
  143. Olshausen, B. A., Anderson, C. H., and Van Essen, D. C., 1993, A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information, J. Neuroscience. 13: 4700–4719.Google Scholar
  144. O’Craven, K. M., Rosen, B. R., Kwong, K. K., Triesman, A., and Savoy, R L., 1997, Voluntary attention modulates fMRI activity in human MT-MST, Neuron. 18: 591–598.Google Scholar
  145. Orban, G. A., Kato, H., and Bishop, P. 0., 1979, End-zone region in receptive fields of hypercomplex and other striate neurons in the cat, J. Neurophysiol. 42: 818: 832.Google Scholar
  146. Orchard, L., and Stern, J. A., 1991, Blinks as an index of cognitive activity during reading,Integr. Phys. Behay. Sci. 26: 108–116.Google Scholar
  147. Paus, T., 1995, Location and function of the human frontal eye-field: A selective review, Neuropsychologia. 39: 475–483.Google Scholar
  148. Paus, T., Marrett, S., Worsley, K. J., and Evans, A. C., 1995, Extraretinal modulation of cerebral blood flow in the human visual cortex: Implications for saccadic suppression, J. Neurophysiol. 74: 2179–2183.Google Scholar
  149. Payne, B. R., Lomber, S. G., Villa, A.E., and Bullier, J., 1996, Reversible deactivation of cerebral network components, Trends in Neurosciences. 12: 535–542.Google Scholar
  150. Payne, B. R.., 1993, Evidence for visual cortical area homologs in cat and macaque monkey. Cereb. Cortex. 3: 1–25.Google Scholar
  151. Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 of the macquae monkey: a double labelling study, J. Comp. Neurol. 253: 374402.Google Scholar
  152. Perry, R. J., and Zeki, S., 1999, An event-related functional MRI study of saccades and covert shifts in spatial attention, 221.1 Soc. for Neurosci. 25: 545.Google Scholar
  153. Petersen, S. E., Robinson, D. L., and Moms, J. D., 1987, Contributions of the pulvinar to visual spatial attention, Neuropsychologia. 25: 97–105.Google Scholar
  154. Polat, U., Mizobi, K., Pettet, M. W., Kasamatsu, T., and Norcia, T., 1998, Collinear stimuli regulate visual responses depending on cell’s contrast threshold, Nature. 391: 580–584.Google Scholar
  155. Pollen, D. A., 1995, Cortical areas in visual awareness, Nature. 377: 293–294.Google Scholar
  156. Pollen, D. A., 1999, Feature article on the neural correlates of visual perception, Cereb. Cortex. 9: 4–19.Google Scholar
  157. Posner, M. I., and Petersen, S. E., 1990, The attention system of the human brain, Annu. Rev Neurosci. 13: 25–42.Google Scholar
  158. Reeves, A., and Sperling, G., 1986, Attention gating in short-term visual memory, Psych. Review. 93: 180–206.Google Scholar
  159. Ridder, W. H.., and Tomlinson, A., 1993, Suppression of contrast sensitivity during eyelid blinks, Vis. Res. 33: 1795–1802.Google Scholar
  160. Robinson, D. L., McClurkin, J. W., Kertzman, C., and Petersen, S. E., 1991, Visual responses of pulvinar and collicular neurons during eye movements of awake, trained macaques, J. Neurophysiol. 66: 485. 496.Google Scholar
  161. Rockland, K. S., and Pandya, D. N., 1970, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.Google Scholar
  162. Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey, Cereb. Cortex. 4: 300–313.Google Scholar
  163. Roelfsema, P. R., Lamme, V. A. F., and Spekreijse, H., 1998, Object-based attention in the primary visual cortex of the macaque monkey, Nature. 395: 376–381.Google Scholar
  164. Rose, D., 1977, Responses of single units in cat visual cortex to moving bars of light as a function of bar length, J. Physiol., London. 271: 1–23.Google Scholar
  165. Ross, J., Morrone, M. C., and Burr, D. C., 1997, Compression of visual space before saccades, Nature. 386: 598–601.Google Scholar
  166. Rottach, K. G., Das, V. E., Wohlgemuth, W., Zivotofsky, A. Z., and Leigh, R. J., 1998Google Scholar
  167. Properties of horizontal saccades accompanied by blinks, J. Neurophysiol. 79: 2895–2502.Google Scholar
  168. Salin, P..-A., and Bullier, J., 1995, Corticocortical connections in the visual system: structure and function, Physiol. Rev. 75: 107–154.Google Scholar
  169. Sandell, J. H., and Schiller, P. H., 1982, Effect of cooling area 18 on striate cortex cells in the squirrel monkey, J. Neurophysiol. 48: 38–48.Google Scholar
  170. Sasaki, Y, Hadjihjani, N., Hibino, H., Dale, A. M., Rosen, B. R., and Tootell, R. B. H., 1999, Local and global attention are represented retinotopically, not lateralized, in human occipital cortex, 6.1 Soc. for Neurosci. 25: 1.Google Scholar
  171. Schall, J. D., and Thompson, K. G., 1999, Neural selection and control of visually guided eye movements, Annu. Rev. Neurosci. 22: 241–259.Google Scholar
  172. Schiller, P. H., 1999, The neural control of visually guided eye movements, in J. Richards, ed., Cognitive Neuroscience of Attention. Erlbaum.Google Scholar
  173. Selemon, L. D., and Goldman-Ralcic, P. S., 1988, Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rehesus monkey: Evidencefor a distributed neural network subserving spatially guided behavior, J. Neurosceince. 8: 4049–4068.Google Scholar
  174. Sereno, A. B., 1992, Programming saccades: the role of attention, in K. Rayner, ed, Eye Movements and Visual Cognition: Scene Perception and Reading. Springer-Verlag, New York, pp. 89–107.Google Scholar
  175. Sharpe, J. A., 1998, Cortical control of eye movements, Current Opinion in Neurology. 11: 31–39.Google Scholar
  176. Shepherd, M., Findlay, J. M., and Hockey, R. J., 1986, The relationship between eye movements and spatial attention, Q..J. Exp. Psychol. 38: 475–491.Google Scholar
  177. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F.M., Raichle, M. E., and Petersen, S. E., 1997, Common blood flow changes across visual tasks. H. Decreases in cerebral cortex J. Cogn. Neurosci. 9: 648–663.Google Scholar
  178. Sillito, A. M., Jones, H. E., Gerstein, G. L., and West. D., 1994, Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex, Nature. 369: 479–482.Google Scholar
  179. Singer, W., and Gray, C. M., 1995, Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci. 18: 555–586.Google Scholar
  180. Skrandies, W., and Luschke, K., 1997, Topography of visually evoked brain activity during eye movements: lambda waves, saccadic suppression, and discrimination performance, International J. Psychophysiology. 27: 15–27.Google Scholar
  181. Snyder, L. H., Batista, A. P., and Andersen, R. A., 2000, Intention-related activity in the posterior parietal cortex: a review, Vis. Res. 40: 1433–1441.Google Scholar
  182. Snyder, L. H., Batista, A. P., and Andersen, R. A., 1997, Coding of intention in the posterior parietal cortex, Nature. 386: 167–170.Google Scholar
  183. Sokolov, A., Lutzenberg, W., Pavlova, M., Preissl, H., Braun, C., and Birbaumer. N., 1999, Gamma-band MEG activity to coherent motion depends on task-driven attention, Neuro. Report. 10: 1997–2000.Google Scholar
  184. Somers, D. C., Dale, A. M., Seifert, A. E., and Tootell, R. B. H., 1999, Functional MRI reveals spatially specific attentional modulation in human primary visual cortex, Proc. Natl. Acad. Sci. 96: 1663–1668.Google Scholar
  185. Sperry, R. W., 1950, Neural basis of the optokinetic response produced by visual inversion, J. Comp. Psych. Physiol. 43: 482–489.Google Scholar
  186. Stevens, J. K., Emerson, R. C., Gerstein, G. L., Kallos, T., Neufeld, G. R., Nichols, C. W., and Rosenquist, A. C., 1976, Paralysis of the awake human: visual perception, Vis. Res. 16: 93–98.Google Scholar
  187. Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R, and Carl, J. R., 1996, Positron emission tomograpy study of voluntary saccadic eye movements and spatial working memory, J. Neurophysiol. 75: 454–468.Google Scholar
  188. Tallon-Baudry, C., and Bertrand, 0., 1999, Oscillatory gamma activity in humans and its role in object representation, Trends in Cognitive Sciences. 3: 151–162.Google Scholar
  189. Their, P., and Andersen, R. A., 1998, Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex, I Neurophysiol. 80: 1713–1735.Google Scholar
  190. Tobler, P. N., Felblinger, J., Bflrki, M., Nirkko, A. C., Ozdoba, C., and MOri, R. M., Functional organisation of saccadic reference system processing extraretinal signals in humans, Vis. Res., in press, 2001.Google Scholar
  191. Tootell,R. B. H., Hadjikhani, N., Hall, E. K., Marrett, S., Vanduffel, W., Vaughan, J.T., and Dale, A. M., 1998, The retinotopy of spatial attention, Neuron. 21: 1409–1422.Google Scholar
  192. Treisman,A., 1966, Our limited attention, Adv. Sei. 600–611.Google Scholar
  193. Treue, S., and Maunsell, J. H. R., 1996, Attentional modulation of visual motion processing in cortical areas MT and MST, Nature. 382: 539–541.Google Scholar
  194. Tzelepi, A., Bezerianos, T., and Bôclis-Wollner, I., 2000, Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man, Clin. Neurophysiol. 111: 259–269.Google Scholar
  195. Uchikawa, K., and Sato, M., 1995, Saccadic suppression of achromatic and dichromatic responses measured by increment-threshold spectral sensitivity, J. Opt. Soc. Am. 12: 661–666.Google Scholar
  196. Valente, M., Naidich, T. P., Abrams, K. J., and Blum, J. T., 1998. Differentiating the pars marginalis from the parieto-occipital sulcus in axial computed tomography sections, Int. J. Neuroradiol. 4: 105–111.Google Scholar
  197. Vanduffel, W., Payne, B. R., Lomber, S. G., and Orban, G. A., 1997, Functional impact of cerebral connections, Proc. Natl. Acad, Sei. USA. 94: 7617–7620.Google Scholar
  198. Velay, J. L., Roll, R., Demaria, J. L., Bouquerel, A., and Roll, J. P., 1995, Human eye muscle proprioceptive feedback is involved in target velocity perception during smooth pursuit, Vis. Res. 35: 79–85.Google Scholar
  199. Velay, J. L., Roll, R, Lennerstrand, G., and Roll, J. P., 1994, Eye proprioception and visual localization in humans: influence of ocular dominance and visual context, Vis. Res. 34: 2169–2176.Google Scholar
  200. Vidyasagar, T. R., 1998, Gating of neuronal responses in macaque primary visual cortex by an atrentional spotlight. Neuro-Report. 9: 1947–1952.Google Scholar
  201. Villa, A. E. P., Rouiller, E. M., Simm, G. M., Zurita, P., de Ribaupierre, Y., and de Ribaupierre, F., 1991, Corticofugal modulation of the information processing in the auditory thalamus of the cat Exp. Brain Res. 86: 506–517.Google Scholar
  202. Volkman, F., 1962, Vision during voluntary saccadic eye movements, J. Opt. Soc. Am. 52: 571–578.Google Scholar
  203. Volkmann, F. C., Riggs, L. A., and Moore, R. K., 1980, Eyeblinks and visual suppression, Science. 207: 900–902.Google Scholar
  204. Von Cramon,M., Schmid, R., and Vogel, M. W., 1969, Über einige Bedingungen des Zusammenhanges von Lidschlag and Blickwendung. Psychologische Forschung, 33: 68–78.Google Scholar
  205. Von Holst, E., and Mittelstaedt, H., 1950, Das Reafferenzprinzip, Naturwissenschaften. 37: 464–476.Google Scholar
  206. Watanabe, Y., Fujita, T., and Gyoba, J.., 1980, Investigation of blinking contingent upon saccadic eye movements, Tohoku Psychologica Folio,. 39: 121–129.Google Scholar
  207. Wenzel, R., Wobst, P., Heekeren, H. H., Kwong, K. K., Brandt, S. A., Kohl, M., Obrig, H., Dimagl, U., Villringer, A., 2000, Saccadic suppression induces focal hypo-oxgenation in the occipital cortex, J Cerebral Blood Flow and Metabolism. 20: 1103–1110.Google Scholar
  208. Weyand, T. G., and Malpeli, J. G., 1993, Responses of neurons in primary visual cortex are modulated by eye position, I Neurophysiol. 69: 2258–2260.Google Scholar
  209. Wibbenmeyer, R., Stem, J. A., and Chen, S. C., 1983, Elevation of visual threshold associated with eyeblink onset, Int. J. Neurosci. 18: 279–286.Google Scholar
  210. Wundt, W., Beiträge zur Theorie der Sinneswahrnehmung. Leipzig: C.F. Winter 1862. Wurtz, R. H., and Goldberg, M. E.., 1972, Activity of superior colliculus in behaving monkey: IV. Effects of lesions on eye movements, J. Neurophysiol. 35: 575–586.Google Scholar
  211. Wurtz, R. H., and Mohler, C. W., 1976a, Enhancement of visual responses in monkey striate cortex and frontal eye fields, I Neurophysiol. 39: 766–772.Google Scholar
  212. Wurtz, R. H., and Mohler, C. W., 1976b, Organization of monkey superior colliculus: enhanced visual response of superficial layer cells, J. Neurophysiol. 39: 745–765.Google Scholar
  213. Zee, D. S., Chur, F. C., Leigh, R. J., Savino, P. J., Schatz, N. J., Reingold, D. B., and Cogan, D. G., 1983, Blink saccade synkinesis, Neurology. 3: 1233–1236.Google Scholar
  214. Zipser, K., Lamme, V. A. F., and Schiller, P. H., 1996, Contextual modulation in primary visual cortex, J. Neurosci. 5: 7376–7389.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Iván Bódis-Wollner
    • 1
  1. 1.Dept. of NeurologyState University of New York Health Center at BrooklynBrooklynUSA

Personalised recommendations