Laminar Organization of the Visual Cortex

A Unified View of Development, Learning, Attention, and Grouping
  • Stephen Grossberg
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


The cerebral cortex is the seat of the highest forms of biological intelligence in all sensory and cognitive modalities. The neocortex has an intricate design which exhibits a characteristic organization into six distinct cortical layers (Brodmann, 1909; Martin, 1989). Differences in the thickness of these layers and the sizes and shapes of neurons led the German anatomist Korbinian Brodmann to identify more than fifty divisions, or areas, of neocortex. This classification has been invaluable as a basis for classifying distinct functions of different parts of neocortex. The functional utility of such a laminar organization in the control of behavior has, however, remained a mystery until recently.


Visual Cortex Lateral Geniculate Nucleus Perceptual Grouping Illusory Contour Boundary Contour System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antonini, A. and Stryker, M. P., 1993a, Functional mapping of horizontal connections in developing ferret visual cortex: Experiments and modeling, J. Neurosci. 14: 7291–7305.Google Scholar
  2. Antonini, A. and Stryker, M. P., 1993b, Rapid remodeling of axonal arbors in the visual cortex, Science. 260: 1819–1821.Google Scholar
  3. Bailey, C. H., Chen M., Keller, F., and Kandel, E. R., 1992, Serotonin-mediated endocytosis of a pCAM: An early step of learning-related synaptic growth in aptysia, Science. 256: 645–649.Google Scholar
  4. Beauchamp, M. S., Cox, R. W., and DeYoe, E. A., 1997, Gradients of attention in the human visual motion processing system, Soc. Neurosci. Abstracts. Abstract 179. 3, 23: 457.Google Scholar
  5. Beck, J., Prazdny, K., and Rosenfeld, A., 1983, A theory of textural segmentation, in: Human and Machine Vision, J. Beck, B. Hope and A. Rosenfeld, eds., Academic Press, New York.Google Scholar
  6. Brodmann, K., 1909, Vergleichende Laalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig.Google Scholar
  7. Bullier, J., Hupi, J. M., James, A., and Girard, P., 1996, Functional interactions between areas V1 and V2 in the monkey, I Physiol. (Paris). 90: 217–220.Google Scholar
  8. Calloway, E. M. and Katz, L. C., 1990, Emergence and refinement of clustered horizontal connections in cat straite cortex, J. Neurosci. 10: 1134–1153.Google Scholar
  9. Cannon, M. W. and Fullenkamp, S. C., 1993, Spatial interactions in apparent contrast: Individual differences in enhancement and suppression effects, Vis. Res. 33: 1685–1695.Google Scholar
  10. Carpenter, G. and Grossberg, S., 1987, A massively parallel architecture for a self-organizing neural pattern recognition machine, Comp. Vis., Graph., Image Proc. 37: 54–115.zbMATHGoogle Scholar
  11. Carpenter, G. and Grossberg, S., eds., 1991, Pattern Recognition by Self-Organizing Neural Networks, M.I.T. Press, Cambridge.Google Scholar
  12. Carpenter, G. and Grossberg, S., 1993, Normal and amnesic learning, recognition, and memory by a neural model of cortico-hippocampal interactions, Trends Neurosci. 16: 131–137.Google Scholar
  13. Cauller, L. J. and Connors, B. W., 1994, Synaptic physiology of horizontal afferents to layer I in slices of rat SI cortex, J. Neurosci. 14: 751–762.Google Scholar
  14. Chapman, B., Zahs, K. R. and Stryker, M. P., 1991, Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex, J. Neurosci. 11: 1347–1358.Google Scholar
  15. Das, A. and Gilbert, C. D., 1995, Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex, Nature. 375: 780–784.Google Scholar
  16. DeAngelis, G. C., Ohzawa, I. and Freeman, R. D., 1993, Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. 1. General characteristics and postnatal development, I Neurophysiol. 69: 1091–1117.Google Scholar
  17. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. and Suarez, H. H., 1995, Recurrent excitation in neocortical circuits, Science. 269: 981–985.Google Scholar
  18. Dubin, M. W. and Cleland, B. G., 1977, Organization of visual inputs to intemeurons of lateral geniculate nucleus of the cat, I Neurophysiol. 40: 410–427.Google Scholar
  19. Duncan, J., 1984, Selective attention and the organization of visual information, J. Exp. Psycho. Gen. 113: 501–517.Google Scholar
  20. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitbock, H. J., 1988, Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cyber. 60: 121–130.Google Scholar
  21. Felleman, D. J. and van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex. 1: 1–47.Google Scholar
  22. Ferster, D. and Lindstr6m, S., 1983, An intracellular analysis of geniculo-cortical connectivity of area 17 of the cat, I Physiol. 342: 181–215.Google Scholar
  23. Ferster, D. and Lindström, S., 1985, Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells, J. Physiol. 367: 233–252.Google Scholar
  24. Galuske, R. A. W. and Singer, W., 1996, The origin and topography of long-range intrinsic projections in cat visual cortex: A developmental study, Cereb. Cortex. 6: 417–430.Google Scholar
  25. Ghose, G. M., Freeman, R. D. and Ohzawa, L, 1994, Local intracortical connections in the cat’s visual cortex: Postnatal development and plasticity, J. Neurophysiol. 72: 1290–1303.Google Scholar
  26. Gilbert, C. D. and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex, Nature. 280: 120–125.Google Scholar
  27. Gilbert, C. D. and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature. 356: 150–152.Google Scholar
  28. Grieve, K.L. and Sillito, A. M., 1991, The length summation properties of layer VI cells in the visual cortex and hypercomplex cell end zone inhibition, Exp. Brain Res. 84: 319–325.Google Scholar
  29. Grieve, K. L. and Sillito, A. M., 1991, A re-appraisal of the role of layer VI of the visual cortex in the generation of cortical end inhibition, Exp. Brain Res. 87: 521–529.Google Scholar
  30. Grieve, K. L. and Sillito, A. M., 1995, Non-length-tuned cells in layers II/III and IV of the visual cortex: The effect of blockade of layer VI on responses to stimuli of different lengths, Exp. Brain Res. 104: 12–20.Google Scholar
  31. Gove, A., Grossberg, S. and Mingolla, E., 1995, Brightness, perception, illusory contours, and corticogeniculate feedback, Vis. Neurosci. 12: 1027–1052.Google Scholar
  32. Gray, C. M. and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Nat. Acad. Sci. 86: 1698–1702.Google Scholar
  33. Grosof, D. H., Shapley, R. M. and Hawken, M. J., 1993, Macaque VI neurons can signal “illusory” contours, Nature. 365: 550–552.Google Scholar
  34. Grossberg, S., 1976a, Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural feature detectors, BioL Cyber. 21: 117–158.MathSciNetGoogle Scholar
  35. Grossberg, S., 1976b, Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions, Biol. Cyber. 23: 187–202.MathSciNetzbMATHGoogle Scholar
  36. Grossberg, S., 1973, Contour enhancement, short-term memory, and constancies in reverberating neural networks, Stud. Applied Math. 52: 217–257.MathSciNetGoogle Scholar
  37. Grossberg, S., 1978, A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans in: Progress in Theoretical Biology (Vol. 5), R. Rosen and F. Snell, eds., Academic Press, New York.Google Scholar
  38. Grossberg, S., 1980, How does a brain build a cognitive code? Psych. Rev. 87: 1–51.Google Scholar
  39. Grossberg, S., 1982, Studies of Mind and Brain, Kluwer, Amsterdam.zbMATHGoogle Scholar
  40. Grossberg, S., 1994, 3-D vision and figure-ground separation by visual cortex. Percept. Psychophy. 55: 48–120.Google Scholar
  41. Grossberg, S., 1995, The attentive brain. Am. Scientist. 83: 483–449.Google Scholar
  42. Grossberg, S., 1997, Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures, Psych. Rev. 104: 618–658.Google Scholar
  43. Grossberg, S., 1999a, How does the cerebral cortex working? Learning, attention, and grouping by the laminar circuits of visual cortex, Spat. Vis. 12: 163–185.Google Scholar
  44. Grossberg, S., 1999b, The link between brain learning, attention, and consciousness, Consci. Cogn. 8: 1–44.Google Scholar
  45. Grossberg, S., 2000, How hallucinations may arise from brain mechanisms of learning, attention, and volition, J. Internat. Neuropsychot Soc. 6: 583–592.Google Scholar
  46. Grossberg, S., Boardman, I. and Cohen, M., 1997, Neural dynamics of variable-rate speech categorization, J. Exp. Psych. 2: 481–503.Google Scholar
  47. Grossberg, S. and Merrill, J. W. L., 1996, The hippocampus and cerebellum in adaptively timed learning, recognition, and movement, J. Cog. Neurosci. 8: 257–277.Google Scholar
  48. Grossberg, S. and Mingolla, E., 1985, Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations, Percept. Psychophy. 38: 141–171.Google Scholar
  49. Grossberg, S., Mingolla, E. and Ross, W. D., 1997, Visual brain and visual perception: How does the cortex do perceptual grouping? Trends Neurosci. 20: 106–111.Google Scholar
  50. Grossberg, S. and Myers, C., The resonant dynamics of speech perception: Interword integration and duration-dependent backwards effects, Psych. Rev.,in press.Google Scholar
  51. Grossberg, S. and Raizada, R. D. S., 2000, Contrast-sensitive perceptual grouping and objectbased attention in the laminar circuits of primary visual cortex, Vis. Res. 40: 1413–1432.Google Scholar
  52. Grossberg, S. and Somers, D., 1991, Synchronized oscillations during cooperative feature linking in a cortical model of visual perception, Neural Net. 4: 453–466.Google Scholar
  53. Grossberg, S. and Stone, G. O., 1986, Neural dynamics of word recognition and recall: Attentional priming, learning, and resonance, Psych. Rev. 93: 46–74.Google Scholar
  54. Grossberg, S. and Williamson, J. R., A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning, Cereb. Cortex,in press.Google Scholar
  55. Heeger„ D. J., 1992, Normalization of cell responses in cat striate cortex, Vis. Neurosci. 9: 181–197.Google Scholar
  56. Hirsch, J. A. and Gilbert, C. D., 1991, Synaptic physiology of horizontal connections in the cat visual cortex, J. Neurosci. 11: 1800–1809.Google Scholar
  57. Hubel, D. H. and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J Physiol. 160: 106–154.Google Scholar
  58. Hubel, D. H., Wiesel, T. N. and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philosoph. Trans. Royal Soc. London (B). 278: 377–409.Google Scholar
  59. Hubel, D. H. and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. Royal Soc. London. 198: 1–59.Google Scholar
  60. Hupé, J. M., James, A. C., Girard, P. and Bullier, J., 1997, Feedback connections from V2 modulate intrinsic connectivity within, Soc. Neurosci. Abstracts. Abstract 406. 15, 23: 1031.Google Scholar
  61. Ito, M., Westheimer, G. and Gilbert, D. C., 1997, Attention modulates the influence of context on spatial integration in VI of alert monkeys, Soc. Neurosci. Abstracts. Abstract 603. 2, 23: 1543.Google Scholar
  62. Johnson, R. R. and Burkhalter, A., 1997, A circuit for amplification of excitatory feedback input from rat extrastriate cortex to primary visual cortex, Soc. Neurosci. Abstracts. 23: 1669.Google Scholar
  63. Julesz, B., 1971, Foundations of Cyclopean Perception, University of Chicago Press, Chicago.Google Scholar
  64. Kandel, E. R. and O’Dell, T. J., 1992, Are adult learning mechanisms also used for development? Science. 258: 243–245.Google Scholar
  65. Kapadia, M. K., Ito, M., Gilbert, C. D. and Westheimer, G., 1995, Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in VI of alert monkeys, Neuron. 15: 843–856.Google Scholar
  66. Kami, A. and Sagi, D., 1991, Where practice makes perfect in textural discrimination: Evidence for primary visual cortex plasticity, Proc. Nat. Acad. Sci. 88: 4966–4970.Google Scholar
  67. Kisvirday, Z. F., Téth, E., Rausch, M. and Eysel, U. T., 1995, Comparison of lateral excitatory and inhibitory connections in cortical orientation maps of the cat, Soc. Neurosci. Abstracts. Abstract. 360. 11, 21: 907.Google Scholar
  68. Knierim, J. J. and van Essen, D. C., 1992, Neuronal responses to static texture patterns in area VI of the alert macaque monkey, J. Neurophysiol. 67: 961–980.Google Scholar
  69. Lamme, V. A. F., Zipser, K. and Spekreijse, H., 1997, Figure-ground signals in VI depend on consciousness and feedback from extra-striate areas, Soc. Neurosci. Abstracts. Abstract 603. 1, 23: 1543.Google Scholar
  70. Lowel, S. and Singer, W., 1992, Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity, Science. 255: 209–212.Google Scholar
  71. Luhmann, H. J., Martinez, Millan, L. and Singer, W., 1986, Development of horizontal intrinsic connections in cat striate cortex, Exp. Brain Res. 63: 443–448.Google Scholar
  72. Macchi, G. and Rinvik, E., 1976, Thalamo-telencephalic circuits: A neuroanatomical survey, in: Handbook of Electroencephalography and Clinical Neurophysiology Vol. 2, Pt. A, A. Remond, ed., Elsevier Press, Amsterdam.Google Scholar
  73. Martin, J. H., 1989, Neurroanatomy: Text and Atlas, Appleton and Lange, NorwalkGoogle Scholar
  74. Mayford, M., Barzilai, A., Keller, F., Schacher, S. and Kandel, E. R., 1992, Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in aplysia, Science. 256: 638–644.Google Scholar
  75. McAdams, C. J. and Maunsell, J. H. R., 1997, Spatial attention and feature-directed attention can both modulate neuronal responses in macaque area V4, Soc. Neurosci. Abstracts. Abstract 802. 5, 23: 2062.Google Scholar
  76. McGuire, B. A., Gilbert, C. D., Riolin, P. A. and Wiesel, T. N., 1991, Target of horizontal connections in macaque primary visual cortex, J. Comp. Neurology. 305: 370–392.Google Scholar
  77. Merzenich, M. M., Recanzone, E. G., Jenkins, W. M., Allard, T. T. and Nudo, R. J., 1988, in: Neurobiology ofNeocorteac, P. Rakic and W. Singer, eds., Wiley, New York.Google Scholar
  78. Moore, C. M. and Egeth, H., 1997, Perception without attention: Evidence of grouping under conditions of inattention, J. Exp. Psych.: Human Percept. Perform. 23: 339–352.Google Scholar
  79. Motter, B. C., 1994a, Neural correlates of attentive selection for color or luminance in extrastriate area V4, J. Neurosci. 14: 2178–2189.Google Scholar
  80. Motter, B. C., 1994b, Neural correlates of feature selective memory and pop-out in extrastriate area V4, J. Neurosci. 14: 2190–2199.Google Scholar
  81. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cats somatic sensory cortex, J. Neurophysiol. 20: 408–434.Google Scholar
  82. Murphy, P. C. and Sillito, A. M., 1987, Cortico fugal feedback influences the generation of length tuning in the visual pathway, Nature. 329: 727–729.Google Scholar
  83. Murphy, P. C. and Sillito, A. M., 1996, Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus, J Neurosci. 16: 1180–1192.Google Scholar
  84. Meyer, G., Lawson, R. and Cohen, W., 1975, The effects of orientation-specific adaptation on the duration of short-term visual storage, Vis. Ras. 15: 569–572.Google Scholar
  85. O’Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. and Savoy R. L., 1997, Voluntary attention modulates fMRI activity in human MT-MST, Neuron. 18: 591–598.Google Scholar
  86. Pandya, D. N. and Yeterian, E. H., 1985, Architecture and connections of cortical association areas, in: Cerebral Cortex 10, A. Peters and E.G. Jones, eds., Plenum Press, New York.Google Scholar
  87. Peterhans, E. and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps, J. Neurosci. 9: 1749–1763.Google Scholar
  88. Poggio, T., Fahle, M. and Edelman, S., 1992, Fast perceptual learning in visual hyperacuity, Science. 256: 1018–1021.Google Scholar
  89. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. and Norcia, A. M., 1998, Collinear stimuli regulate visual responses depending on cell’s contrast threshold, Nature. 391: 580–584.Google Scholar
  90. Polat, U. and Sagi, D., 1994, The architecture of perceptual spatial interactions, Vis. Res. 34: 73–78.Google Scholar
  91. Posner, M. I., 1980, Orienting of attention, Quarterly I Exp. Psych. 32: 3–25.Google Scholar
  92. Press, W. A. and van Essen, D. C., 1997, Attentions’ modulation of neuronal responses in macaque area VI, Soc. Neurosci. Abstracts. Abstract 405. 3, 23: 1026.Google Scholar
  93. Raizada, R. D. S. and Grossberg, S., Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast, Spatial Cog.,in press.Google Scholar
  94. Ramachandran, V. S. and Nelson, J. I., 1976, Global grouping overrides point-to-point disparities, Perception. 5: 125–128.Google Scholar
  95. Redies, C., Crook, J. M. and Creutzfeldt, O. D., 1986, Neural responses to borders with and without luminance gradients in cat visual cortex and dLGN, Exp. Brain Res. 61: 469–481.Google Scholar
  96. Reid, R. C. and Alonso, J-M., 1995, Specificity of monosynaptic connections from thalamus to visual cortex, Nature. 378: 281–284.Google Scholar
  97. Reynolds, J., Chelazzi, L. and Desimone, R., 1999, Competitive mechanisms subserve attention in macaque areas V2 and V4, J. Neurosci. 19: 1736–1753.Google Scholar
  98. Rockland, K. S., 1994, The organization of feedback connections from area V1(18) to V1(17), in: Cerebral Cortex 4, A. Peters and K.S. Rockland, eds., Plenum Press, New York.Google Scholar
  99. Roelfsema, P. R., Lamme, V. A. F. and Spekreijse, H., 1998, Object-based attention in the primary visual cortex of the macaque monkey, Nature. 395: 376–381.Google Scholar
  100. Ross, W. D., Grossberg, S. and Mingolla, E., 2000, Visual cortical mechanisms of perceptual grouping: Interacting layers, networks, columns, and maps, Neural Net. 13: 571–588.Google Scholar
  101. Schmidt, K. E., Schlote, W., Bratzke, H., Raum, T., Singer, W. and Galuske, R. A. W., 1997, Patterns of long range intrinsic connectivity in auditory and language areas of the human temporal cortex, Soc. Neurosci. Abstracts. Abstract 415. 13, 23: 1058.Google Scholar
  102. Sheth, B. R., Sharma, J., Rao, S. C. and Sur, M., 1996, Orientation maps of subjective contours in visual cortex, Science. 274: 2110–2115.Google Scholar
  103. Sillito, A. M., Jones, H. E., Gerstein, G. L. and West, D. C., 1994, Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex, Nature. 369: 479–482.Google Scholar
  104. Singer, W., 1982, The role of attention in developmental plasticity, Human Neurobiol. 1: 41–43.Google Scholar
  105. Somers, D. C., Male, A. M., Seifert, A. E. and Tootell, R. B., 1999, Functional MRI reveals spatially specific attentional modulation in human primary visual cortex, Proc. Nat. Acad. Sci., USA 96: 1663–1668.Google Scholar
  106. Somers, D. C., Nelson, S. B. and Sur, M., 1995, An emergent model of orientation selectivity in cat visual cortical simple cells, I Neurosci. 15: 5448–5465.Google Scholar
  107. Stemmler, M., Usher, M. and Niebur, E., 1995, Lateral interactions in primary visual cortex: A model bridging physiology and psychophysics, Science. 269: 1877–1880.Google Scholar
  108. Stryker, M. P. and Harris, W., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6: 2117–2133.Google Scholar
  109. Thorpe, S., Fize, D. and Marlot, C., 1996, Speed of processing in the human visual system, Nature. 381: 520–522.Google Scholar
  110. Treue, S. and Maunsell, J. H. R., 1997, Attentionsl modulation of visual motion processing in cortical areas MT and MST, Nature. 382: 539–541.Google Scholar
  111. Tsumoto, T., Creutzfeldt, O. D. and Legendy, C. R., 1978, Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat, Exp. Brain Res. 25: 291–306.Google Scholar
  112. van Essen, D. C. and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends in Neurosci. 6: 370–375.Google Scholar
  113. von der Heydt, R., Peterhans, E. and Baumgartner, G., 1984, Illusory contours and cortical neuron responses, Science. 224: 1260–1262.Google Scholar
  114. Watanabe, T., Sasaki, T., Nielsen, M., Takino, R. and Miyakawa, S., 1998, Attention-regulated activity in human primary visual cortex, J. Neurophysiol. 79: 2218–2221.Google Scholar
  115. Weber, A. J., Kalil, R. E. and Behan, M., 1989, Synaptic connections between corticogeniculate axons and intemeurons in the dorsal lateral geniculate nucleus of the cat, J Comp. Neural. 289: 156–164.Google Scholar
  116. Wittmer, L. L., Dalva, M. B. and Katz, L. C., 1997, Reciprocal interactions between layer 4 and layer 6 cells in ferret visual cortex, Soc. Neurosci. Abstracts. Abstract 651. 5, 23: 1668.Google Scholar
  117. Zeki, S. and Shipp, S., 1988, The functional logic of cortical connections, Nature. 335: 311–317.Google Scholar
  118. Zohary, E., Cerebrini, S., Britten, K. H. and Newsome, W. T., 1994, Neuronal plasticity that underlies improvement in perceptual performance, Science. 263: 1289–1292.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Stephen Grossberg
    • 1
  1. 1.Dept. of Cognitive and Neural SystemsBoston UniversityBostonUSA

Personalised recommendations