Skip to main content

Laminar Organization of the Visual Cortex

A Unified View of Development, Learning, Attention, and Grouping

  • Chapter
Models of the Visual System
  • 559 Accesses

Abstract

The cerebral cortex is the seat of the highest forms of biological intelligence in all sensory and cognitive modalities. The neocortex has an intricate design which exhibits a characteristic organization into six distinct cortical layers (Brodmann, 1909; Martin, 1989). Differences in the thickness of these layers and the sizes and shapes of neurons led the German anatomist Korbinian Brodmann to identify more than fifty divisions, or areas, of neocortex. This classification has been invaluable as a basis for classifying distinct functions of different parts of neocortex. The functional utility of such a laminar organization in the control of behavior has, however, remained a mystery until recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonini, A. and Stryker, M. P., 1993a, Functional mapping of horizontal connections in developing ferret visual cortex: Experiments and modeling, J. Neurosci. 14: 7291–7305.

    Google Scholar 

  • Antonini, A. and Stryker, M. P., 1993b, Rapid remodeling of axonal arbors in the visual cortex, Science. 260: 1819–1821.

    Google Scholar 

  • Bailey, C. H., Chen M., Keller, F., and Kandel, E. R., 1992, Serotonin-mediated endocytosis of a pCAM: An early step of learning-related synaptic growth in aptysia, Science. 256: 645–649.

    Google Scholar 

  • Beauchamp, M. S., Cox, R. W., and DeYoe, E. A., 1997, Gradients of attention in the human visual motion processing system, Soc. Neurosci. Abstracts. Abstract 179. 3, 23: 457.

    Google Scholar 

  • Beck, J., Prazdny, K., and Rosenfeld, A., 1983, A theory of textural segmentation, in: Human and Machine Vision, J. Beck, B. Hope and A. Rosenfeld, eds., Academic Press, New York.

    Google Scholar 

  • Brodmann, K., 1909, Vergleichende Laalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig.

    Google Scholar 

  • Bullier, J., Hupi, J. M., James, A., and Girard, P., 1996, Functional interactions between areas V1 and V2 in the monkey, I Physiol. (Paris). 90: 217–220.

    Google Scholar 

  • Calloway, E. M. and Katz, L. C., 1990, Emergence and refinement of clustered horizontal connections in cat straite cortex, J. Neurosci. 10: 1134–1153.

    Google Scholar 

  • Cannon, M. W. and Fullenkamp, S. C., 1993, Spatial interactions in apparent contrast: Individual differences in enhancement and suppression effects, Vis. Res. 33: 1685–1695.

    Google Scholar 

  • Carpenter, G. and Grossberg, S., 1987, A massively parallel architecture for a self-organizing neural pattern recognition machine, Comp. Vis., Graph., Image Proc. 37: 54–115.

    MATH  Google Scholar 

  • Carpenter, G. and Grossberg, S., eds., 1991, Pattern Recognition by Self-Organizing Neural Networks, M.I.T. Press, Cambridge.

    Google Scholar 

  • Carpenter, G. and Grossberg, S., 1993, Normal and amnesic learning, recognition, and memory by a neural model of cortico-hippocampal interactions, Trends Neurosci. 16: 131–137.

    Google Scholar 

  • Cauller, L. J. and Connors, B. W., 1994, Synaptic physiology of horizontal afferents to layer I in slices of rat SI cortex, J. Neurosci. 14: 751–762.

    Google Scholar 

  • Chapman, B., Zahs, K. R. and Stryker, M. P., 1991, Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex, J. Neurosci. 11: 1347–1358.

    Google Scholar 

  • Das, A. and Gilbert, C. D., 1995, Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex, Nature. 375: 780–784.

    Google Scholar 

  • DeAngelis, G. C., Ohzawa, I. and Freeman, R. D., 1993, Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. 1. General characteristics and postnatal development, I Neurophysiol. 69: 1091–1117.

    Google Scholar 

  • Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. and Suarez, H. H., 1995, Recurrent excitation in neocortical circuits, Science. 269: 981–985.

    Google Scholar 

  • Dubin, M. W. and Cleland, B. G., 1977, Organization of visual inputs to intemeurons of lateral geniculate nucleus of the cat, I Neurophysiol. 40: 410–427.

    Google Scholar 

  • Duncan, J., 1984, Selective attention and the organization of visual information, J. Exp. Psycho. Gen. 113: 501–517.

    Google Scholar 

  • Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitbock, H. J., 1988, Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cyber. 60: 121–130.

    Google Scholar 

  • Felleman, D. J. and van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex. 1: 1–47.

    Google Scholar 

  • Ferster, D. and Lindstr6m, S., 1983, An intracellular analysis of geniculo-cortical connectivity of area 17 of the cat, I Physiol. 342: 181–215.

    Google Scholar 

  • Ferster, D. and Lindström, S., 1985, Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells, J. Physiol. 367: 233–252.

    Google Scholar 

  • Galuske, R. A. W. and Singer, W., 1996, The origin and topography of long-range intrinsic projections in cat visual cortex: A developmental study, Cereb. Cortex. 6: 417–430.

    Google Scholar 

  • Ghose, G. M., Freeman, R. D. and Ohzawa, L, 1994, Local intracortical connections in the cat’s visual cortex: Postnatal development and plasticity, J. Neurophysiol. 72: 1290–1303.

    Google Scholar 

  • Gilbert, C. D. and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex, Nature. 280: 120–125.

    Google Scholar 

  • Gilbert, C. D. and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature. 356: 150–152.

    Google Scholar 

  • Grieve, K.L. and Sillito, A. M., 1991, The length summation properties of layer VI cells in the visual cortex and hypercomplex cell end zone inhibition, Exp. Brain Res. 84: 319–325.

    Google Scholar 

  • Grieve, K. L. and Sillito, A. M., 1991, A re-appraisal of the role of layer VI of the visual cortex in the generation of cortical end inhibition, Exp. Brain Res. 87: 521–529.

    Google Scholar 

  • Grieve, K. L. and Sillito, A. M., 1995, Non-length-tuned cells in layers II/III and IV of the visual cortex: The effect of blockade of layer VI on responses to stimuli of different lengths, Exp. Brain Res. 104: 12–20.

    Google Scholar 

  • Gove, A., Grossberg, S. and Mingolla, E., 1995, Brightness, perception, illusory contours, and corticogeniculate feedback, Vis. Neurosci. 12: 1027–1052.

    Google Scholar 

  • Gray, C. M. and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Nat. Acad. Sci. 86: 1698–1702.

    Google Scholar 

  • Grosof, D. H., Shapley, R. M. and Hawken, M. J., 1993, Macaque VI neurons can signal “illusory” contours, Nature. 365: 550–552.

    Google Scholar 

  • Grossberg, S., 1976a, Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural feature detectors, BioL Cyber. 21: 117–158.

    MathSciNet  Google Scholar 

  • Grossberg, S., 1976b, Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions, Biol. Cyber. 23: 187–202.

    MathSciNet  MATH  Google Scholar 

  • Grossberg, S., 1973, Contour enhancement, short-term memory, and constancies in reverberating neural networks, Stud. Applied Math. 52: 217–257.

    MathSciNet  Google Scholar 

  • Grossberg, S., 1978, A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans in: Progress in Theoretical Biology (Vol. 5), R. Rosen and F. Snell, eds., Academic Press, New York.

    Google Scholar 

  • Grossberg, S., 1980, How does a brain build a cognitive code? Psych. Rev. 87: 1–51.

    Google Scholar 

  • Grossberg, S., 1982, Studies of Mind and Brain, Kluwer, Amsterdam.

    MATH  Google Scholar 

  • Grossberg, S., 1994, 3-D vision and figure-ground separation by visual cortex. Percept. Psychophy. 55: 48–120.

    Google Scholar 

  • Grossberg, S., 1995, The attentive brain. Am. Scientist. 83: 483–449.

    Google Scholar 

  • Grossberg, S., 1997, Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures, Psych. Rev. 104: 618–658.

    Google Scholar 

  • Grossberg, S., 1999a, How does the cerebral cortex working? Learning, attention, and grouping by the laminar circuits of visual cortex, Spat. Vis. 12: 163–185.

    Google Scholar 

  • Grossberg, S., 1999b, The link between brain learning, attention, and consciousness, Consci. Cogn. 8: 1–44.

    Google Scholar 

  • Grossberg, S., 2000, How hallucinations may arise from brain mechanisms of learning, attention, and volition, J. Internat. Neuropsychot Soc. 6: 583–592.

    Google Scholar 

  • Grossberg, S., Boardman, I. and Cohen, M., 1997, Neural dynamics of variable-rate speech categorization, J. Exp. Psych. 2: 481–503.

    Google Scholar 

  • Grossberg, S. and Merrill, J. W. L., 1996, The hippocampus and cerebellum in adaptively timed learning, recognition, and movement, J. Cog. Neurosci. 8: 257–277.

    Google Scholar 

  • Grossberg, S. and Mingolla, E., 1985, Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations, Percept. Psychophy. 38: 141–171.

    Google Scholar 

  • Grossberg, S., Mingolla, E. and Ross, W. D., 1997, Visual brain and visual perception: How does the cortex do perceptual grouping? Trends Neurosci. 20: 106–111.

    Google Scholar 

  • Grossberg, S. and Myers, C., The resonant dynamics of speech perception: Interword integration and duration-dependent backwards effects, Psych. Rev.,in press.

    Google Scholar 

  • Grossberg, S. and Raizada, R. D. S., 2000, Contrast-sensitive perceptual grouping and objectbased attention in the laminar circuits of primary visual cortex, Vis. Res. 40: 1413–1432.

    Google Scholar 

  • Grossberg, S. and Somers, D., 1991, Synchronized oscillations during cooperative feature linking in a cortical model of visual perception, Neural Net. 4: 453–466.

    Google Scholar 

  • Grossberg, S. and Stone, G. O., 1986, Neural dynamics of word recognition and recall: Attentional priming, learning, and resonance, Psych. Rev. 93: 46–74.

    Google Scholar 

  • Grossberg, S. and Williamson, J. R., A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning, Cereb. Cortex,in press.

    Google Scholar 

  • Heeger„ D. J., 1992, Normalization of cell responses in cat striate cortex, Vis. Neurosci. 9: 181–197.

    Google Scholar 

  • Hirsch, J. A. and Gilbert, C. D., 1991, Synaptic physiology of horizontal connections in the cat visual cortex, J. Neurosci. 11: 1800–1809.

    Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J Physiol. 160: 106–154.

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N. and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philosoph. Trans. Royal Soc. London (B). 278: 377–409.

    Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. Royal Soc. London. 198: 1–59.

    Google Scholar 

  • Hupé, J. M., James, A. C., Girard, P. and Bullier, J., 1997, Feedback connections from V2 modulate intrinsic connectivity within, Soc. Neurosci. Abstracts. Abstract 406. 15, 23: 1031.

    Google Scholar 

  • Ito, M., Westheimer, G. and Gilbert, D. C., 1997, Attention modulates the influence of context on spatial integration in VI of alert monkeys, Soc. Neurosci. Abstracts. Abstract 603. 2, 23: 1543.

    Google Scholar 

  • Johnson, R. R. and Burkhalter, A., 1997, A circuit for amplification of excitatory feedback input from rat extrastriate cortex to primary visual cortex, Soc. Neurosci. Abstracts. 23: 1669.

    Google Scholar 

  • Julesz, B., 1971, Foundations of Cyclopean Perception, University of Chicago Press, Chicago.

    Google Scholar 

  • Kandel, E. R. and O’Dell, T. J., 1992, Are adult learning mechanisms also used for development? Science. 258: 243–245.

    Google Scholar 

  • Kapadia, M. K., Ito, M., Gilbert, C. D. and Westheimer, G., 1995, Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in VI of alert monkeys, Neuron. 15: 843–856.

    Google Scholar 

  • Kami, A. and Sagi, D., 1991, Where practice makes perfect in textural discrimination: Evidence for primary visual cortex plasticity, Proc. Nat. Acad. Sci. 88: 4966–4970.

    Google Scholar 

  • Kisvirday, Z. F., Téth, E., Rausch, M. and Eysel, U. T., 1995, Comparison of lateral excitatory and inhibitory connections in cortical orientation maps of the cat, Soc. Neurosci. Abstracts. Abstract. 360. 11, 21: 907.

    Google Scholar 

  • Knierim, J. J. and van Essen, D. C., 1992, Neuronal responses to static texture patterns in area VI of the alert macaque monkey, J. Neurophysiol. 67: 961–980.

    Google Scholar 

  • Lamme, V. A. F., Zipser, K. and Spekreijse, H., 1997, Figure-ground signals in VI depend on consciousness and feedback from extra-striate areas, Soc. Neurosci. Abstracts. Abstract 603. 1, 23: 1543.

    Google Scholar 

  • Lowel, S. and Singer, W., 1992, Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity, Science. 255: 209–212.

    Google Scholar 

  • Luhmann, H. J., Martinez, Millan, L. and Singer, W., 1986, Development of horizontal intrinsic connections in cat striate cortex, Exp. Brain Res. 63: 443–448.

    Google Scholar 

  • Macchi, G. and Rinvik, E., 1976, Thalamo-telencephalic circuits: A neuroanatomical survey, in: Handbook of Electroencephalography and Clinical Neurophysiology Vol. 2, Pt. A, A. Remond, ed., Elsevier Press, Amsterdam.

    Google Scholar 

  • Martin, J. H., 1989, Neurroanatomy: Text and Atlas, Appleton and Lange, Norwalk

    Google Scholar 

  • Mayford, M., Barzilai, A., Keller, F., Schacher, S. and Kandel, E. R., 1992, Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in aplysia, Science. 256: 638–644.

    Google Scholar 

  • McAdams, C. J. and Maunsell, J. H. R., 1997, Spatial attention and feature-directed attention can both modulate neuronal responses in macaque area V4, Soc. Neurosci. Abstracts. Abstract 802. 5, 23: 2062.

    Google Scholar 

  • McGuire, B. A., Gilbert, C. D., Riolin, P. A. and Wiesel, T. N., 1991, Target of horizontal connections in macaque primary visual cortex, J. Comp. Neurology. 305: 370–392.

    Google Scholar 

  • Merzenich, M. M., Recanzone, E. G., Jenkins, W. M., Allard, T. T. and Nudo, R. J., 1988, in: Neurobiology ofNeocorteac, P. Rakic and W. Singer, eds., Wiley, New York.

    Google Scholar 

  • Moore, C. M. and Egeth, H., 1997, Perception without attention: Evidence of grouping under conditions of inattention, J. Exp. Psych.: Human Percept. Perform. 23: 339–352.

    Google Scholar 

  • Motter, B. C., 1994a, Neural correlates of attentive selection for color or luminance in extrastriate area V4, J. Neurosci. 14: 2178–2189.

    Google Scholar 

  • Motter, B. C., 1994b, Neural correlates of feature selective memory and pop-out in extrastriate area V4, J. Neurosci. 14: 2190–2199.

    Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cats somatic sensory cortex, J. Neurophysiol. 20: 408–434.

    Google Scholar 

  • Murphy, P. C. and Sillito, A. M., 1987, Cortico fugal feedback influences the generation of length tuning in the visual pathway, Nature. 329: 727–729.

    Google Scholar 

  • Murphy, P. C. and Sillito, A. M., 1996, Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus, J Neurosci. 16: 1180–1192.

    Google Scholar 

  • Meyer, G., Lawson, R. and Cohen, W., 1975, The effects of orientation-specific adaptation on the duration of short-term visual storage, Vis. Ras. 15: 569–572.

    Google Scholar 

  • O’Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. and Savoy R. L., 1997, Voluntary attention modulates fMRI activity in human MT-MST, Neuron. 18: 591–598.

    Google Scholar 

  • Pandya, D. N. and Yeterian, E. H., 1985, Architecture and connections of cortical association areas, in: Cerebral Cortex 10, A. Peters and E.G. Jones, eds., Plenum Press, New York.

    Google Scholar 

  • Peterhans, E. and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps, J. Neurosci. 9: 1749–1763.

    Google Scholar 

  • Poggio, T., Fahle, M. and Edelman, S., 1992, Fast perceptual learning in visual hyperacuity, Science. 256: 1018–1021.

    Google Scholar 

  • Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. and Norcia, A. M., 1998, Collinear stimuli regulate visual responses depending on cell’s contrast threshold, Nature. 391: 580–584.

    Google Scholar 

  • Polat, U. and Sagi, D., 1994, The architecture of perceptual spatial interactions, Vis. Res. 34: 73–78.

    Google Scholar 

  • Posner, M. I., 1980, Orienting of attention, Quarterly I Exp. Psych. 32: 3–25.

    Google Scholar 

  • Press, W. A. and van Essen, D. C., 1997, Attentions’ modulation of neuronal responses in macaque area VI, Soc. Neurosci. Abstracts. Abstract 405. 3, 23: 1026.

    Google Scholar 

  • Raizada, R. D. S. and Grossberg, S., Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast, Spatial Cog.,in press.

    Google Scholar 

  • Ramachandran, V. S. and Nelson, J. I., 1976, Global grouping overrides point-to-point disparities, Perception. 5: 125–128.

    Google Scholar 

  • Redies, C., Crook, J. M. and Creutzfeldt, O. D., 1986, Neural responses to borders with and without luminance gradients in cat visual cortex and dLGN, Exp. Brain Res. 61: 469–481.

    Google Scholar 

  • Reid, R. C. and Alonso, J-M., 1995, Specificity of monosynaptic connections from thalamus to visual cortex, Nature. 378: 281–284.

    Google Scholar 

  • Reynolds, J., Chelazzi, L. and Desimone, R., 1999, Competitive mechanisms subserve attention in macaque areas V2 and V4, J. Neurosci. 19: 1736–1753.

    Google Scholar 

  • Rockland, K. S., 1994, The organization of feedback connections from area V1(18) to V1(17), in: Cerebral Cortex 4, A. Peters and K.S. Rockland, eds., Plenum Press, New York.

    Google Scholar 

  • Roelfsema, P. R., Lamme, V. A. F. and Spekreijse, H., 1998, Object-based attention in the primary visual cortex of the macaque monkey, Nature. 395: 376–381.

    Google Scholar 

  • Ross, W. D., Grossberg, S. and Mingolla, E., 2000, Visual cortical mechanisms of perceptual grouping: Interacting layers, networks, columns, and maps, Neural Net. 13: 571–588.

    Google Scholar 

  • Schmidt, K. E., Schlote, W., Bratzke, H., Raum, T., Singer, W. and Galuske, R. A. W., 1997, Patterns of long range intrinsic connectivity in auditory and language areas of the human temporal cortex, Soc. Neurosci. Abstracts. Abstract 415. 13, 23: 1058.

    Google Scholar 

  • Sheth, B. R., Sharma, J., Rao, S. C. and Sur, M., 1996, Orientation maps of subjective contours in visual cortex, Science. 274: 2110–2115.

    Google Scholar 

  • Sillito, A. M., Jones, H. E., Gerstein, G. L. and West, D. C., 1994, Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex, Nature. 369: 479–482.

    Google Scholar 

  • Singer, W., 1982, The role of attention in developmental plasticity, Human Neurobiol. 1: 41–43.

    Google Scholar 

  • Somers, D. C., Male, A. M., Seifert, A. E. and Tootell, R. B., 1999, Functional MRI reveals spatially specific attentional modulation in human primary visual cortex, Proc. Nat. Acad. Sci., USA 96: 1663–1668.

    Google Scholar 

  • Somers, D. C., Nelson, S. B. and Sur, M., 1995, An emergent model of orientation selectivity in cat visual cortical simple cells, I Neurosci. 15: 5448–5465.

    Google Scholar 

  • Stemmler, M., Usher, M. and Niebur, E., 1995, Lateral interactions in primary visual cortex: A model bridging physiology and psychophysics, Science. 269: 1877–1880.

    Google Scholar 

  • Stryker, M. P. and Harris, W., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6: 2117–2133.

    Google Scholar 

  • Thorpe, S., Fize, D. and Marlot, C., 1996, Speed of processing in the human visual system, Nature. 381: 520–522.

    Google Scholar 

  • Treue, S. and Maunsell, J. H. R., 1997, Attentionsl modulation of visual motion processing in cortical areas MT and MST, Nature. 382: 539–541.

    Google Scholar 

  • Tsumoto, T., Creutzfeldt, O. D. and Legendy, C. R., 1978, Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat, Exp. Brain Res. 25: 291–306.

    Google Scholar 

  • van Essen, D. C. and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends in Neurosci. 6: 370–375.

    Google Scholar 

  • von der Heydt, R., Peterhans, E. and Baumgartner, G., 1984, Illusory contours and cortical neuron responses, Science. 224: 1260–1262.

    Google Scholar 

  • Watanabe, T., Sasaki, T., Nielsen, M., Takino, R. and Miyakawa, S., 1998, Attention-regulated activity in human primary visual cortex, J. Neurophysiol. 79: 2218–2221.

    Google Scholar 

  • Weber, A. J., Kalil, R. E. and Behan, M., 1989, Synaptic connections between corticogeniculate axons and intemeurons in the dorsal lateral geniculate nucleus of the cat, J Comp. Neural. 289: 156–164.

    Google Scholar 

  • Wittmer, L. L., Dalva, M. B. and Katz, L. C., 1997, Reciprocal interactions between layer 4 and layer 6 cells in ferret visual cortex, Soc. Neurosci. Abstracts. Abstract 651. 5, 23: 1668.

    Google Scholar 

  • Zeki, S. and Shipp, S., 1988, The functional logic of cortical connections, Nature. 335: 311–317.

    Google Scholar 

  • Zohary, E., Cerebrini, S., Britten, K. H. and Newsome, W. T., 1994, Neuronal plasticity that underlies improvement in perceptual performance, Science. 263: 1289–1292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grossberg, S. (2002). Laminar Organization of the Visual Cortex. In: Hung, G.K., Ciuffreda, K.J. (eds) Models of the Visual System. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5865-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5865-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3377-5

  • Online ISBN: 978-1-4757-5865-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics