Skip to main content

Models of the Lens and Aging Effects

  • Chapter
Models of the Visual System

Abstract

The crystalline lens of the human visual system provides the variable refractive power needed for focus by the eye at all distances. Of the major refractive tissues, only the normal lens exhibits a uniquely specific and reproducible development path with increasing age. Optical modeling of the process of image formation on the retina thus relies on accurate and complete descriptions of the age dependence of lens shape, curvature, placement within the globe relative to the cornea and retina, and refractive index gradient. Other contexts in which an optical model of the lens may be important include studies of the posterior of the globe, and especially the retina, where changes in lens transparency, color, and refractive power could affect images and spectra in this region. Finally, the recent interest by both vision scientists and refractive surgeons in improving visual resolution to its theoretical limit (also known as “super-vision”), using the Shack-Hartmann method for collection of the wavefront and Zernike polynomials for its analysis, necessitates a more detailed examination of the changing contribution of the crystalline lens to overall image formation and image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Ghoul, K. J., Nordgren, R. K., Kuszak, A. J., Free!, C. D., Costello, M. J., Kuszak, J. R., 2001, Structural evidence of human nuclear fiber compaction as a function of ageing and cataractogenesis, Exp. Eye Res. 72: 199–214.

    Article  Google Scholar 

  • Applegate, R. A., 1998, Personal communication.

    Google Scholar 

  • Arbelaez, M. C., 2001, Super vision: dream or reality, J. Refract. Surg. 17: S211–218.

    Google Scholar 

  • Atchison, D. A., 2001, Personal communication.

    Google Scholar 

  • Atchison, D. A., Smith, G. 2000, Optics of the Human Eye, Butterworth-Heinemann, Boston. Bessems, G. J., De Man, B. M., Bours, J., Hoenders, H. J., 1986, Age-related variations in the distribution of crystallins within the bovine lens, Exp. Eye Res. 43: 1019–1030.

    Google Scholar 

  • Bessems, G. J., Hoenders, H. J., Wollensak, J., 1983, Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract, Exp. Eye Res. 37: 627–637.

    Article  Google Scholar 

  • Bettelheim, F. A., Paunovic, M., 1979, Light scattering of normal human lens I. Application of random density and orientation fluctuation theory, Biophys. J. 26: 85–99.

    Article  Google Scholar 

  • Blaker, J. W., 1971, Geometric Optics–The Maim* Method, New York: Marcel Dekker. Bours, J., Wegener, A., Hofmann, D., Fodisch, H. J., Hockwin, 0., 1990, Protein profiles of microsections of the fetal and adult human lens during development and ageing, Mech. Ageing Dev. 54: 13–27.

    Google Scholar 

  • Bron, A. J., Vrensen, G. F., Koretz, J., Maraini, G., Harding, J. J., 2000, The eing lens. Ophthalmologica. 214: 86–104.

    Article  Google Scholar 

  • Brown, N., 1972, An advanced slit-image camera, Br, J. Ophthalmol. 56: 624–631. Brown, N., 1973a, The change in shape and internal form of the lens of the eye on accommodation, Exp. Eye Res. 15: 441–459.

    Article  Google Scholar 

  • Brown, N., 1973b, Quantitative slit-image photography of the anterior chamber, Trans. Ophthalmol. Soc. U. K. 93: 277–86.

    Google Scholar 

  • Brown, N., 1974, The change in lens curvature with age, Exp. Eye Res. 19: 175–183.

    Article  Google Scholar 

  • Brown, N. A., Sparrow, J. M., Bron, A. J., 1988, Central compaction in the process of lens growth as indicated by lamellar cataract, Br. J. Ophthalmol. 72: 538–544

    Article  Google Scholar 

  • Brown, N. P., Koretz, J. F., Bron, A. J., 1999, The development and maintenance of emmetropia, Eye. 13: 83–92.

    Article  Google Scholar 

  • Chylack, L. T., Jr., Wolfe, J. K., Friend, J., Khu, P. M., Singer, D. M., et al., 1993, Quantitating cataract and nuclear brunescence, the Harvard and LOCS systems, Optom. Vis. Sci. 70: 886–895.

    Article  Google Scholar 

  • Cook, C. A., Koretz, J. F., 1991, Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform, Applied Optics. 30: 2088–2099

    Article  Google Scholar 

  • Cook, C. A., Koretz, J. F., 1995, Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox, Technical Series on Vision Science and Its Applications (Op. Soc. Am.),pp. 138141.

    Google Scholar 

  • Cook, C. A., Koretz, J. F., 1998, Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I.

    Google Scholar 

  • Image processing methods, J Opt, Soc. Am. A Opt. Image Sci. Vis. 15: 1473–1485.

    Google Scholar 

  • Cook, C. A., Koretz, J. F., Pfahnl, A., Hyun, J., Kaufman, P. L., 1994, Aging of the human crystalline lens and anterior segment, Vis. Res. 34: 2945–2954.

    Article  Google Scholar 

  • Dayson, H., 1990, Dayson’s Physiology of the Eye, 5th Ed. ed. New York: Pergamon Press Dubbelman, M., Van der Heijde, G. L., 2001, The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox, Vis. Res. 41: 1867–1877.

    Google Scholar 

  • Fagerholm, P. P., Philipson, B. T., Lidstrom, B., 1981, Normal human lenses–the distribution of protein, Exp. Eye Res. 33: 615–620.

    Article  Google Scholar 

  • Fu, S. C., Su, S. W., Wagner, B. J., Hart, R., 1984, Characterization of lens proteins. IV. Analysis of soluble high molecular weight protein aggregates in human lenses, Exp. Eye Res. 38: 485–495.

    Article  Google Scholar 

  • Gaillard, E. R., Zheng, L., Merriam, J. C., Dillon, J., 2000, Age-related changes in the absorption characteristics of the primate lens, Invest. Ophthalmol. Vis. Sci. 41: 1454–1459.

    Google Scholar 

  • Garland, D. L., Duglas-Tabor, Y., Jimenez-Asensio, J., Datiles, M. B., Magno, B., 1996, The nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and introduction of a new method of lens dissection, Exp. Eye Res. 62: 285–291.

    Article  Google Scholar 

  • Guirao, A., Williams, D. R., Cox, I. G., 2001, Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18: 1003–1015.

    Article  Google Scholar 

  • Hong, X., Thibos, L. N., 2000, Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery, J. Refract. Surg. 16: S647–650.

    Google Scholar 

  • Howland, H. C., 1994, Physiological Optics, in: Principles and Practice of Ophthalmology: Basic Sciences, ed. D. M. Albert and F. A. Jakobiec, W. B. Saunders Company, Philadelphia, PA.

    Google Scholar 

  • Johnson, C. A., Howard, D. L., Marshall, D., Shu, H., 1993, A noninvasive video-based method for measuring lens transmission properties of the human eye, Optom. Vis. Sci. 70: 944–955.

    Article  Google Scholar 

  • Klein, M. V., Furtak, T. E., 1986, Optics, John Wiley and Sons, New York, N.Y.

    Google Scholar 

  • Koretz, J. F., 2000, Development and aging of human visual focusing mechanisms, in: Trends in Optonics and Photonics: Vision Science and Its Applications, ed. V.

    Google Scholar 

  • Lakshminarayanan, Optical Society of America, Washington, D.C. 35: 246–258.

    Google Scholar 

  • Koretz, J. F., Cook, C. A., Kaufman, P. L., 1997, Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus, Invest. Ophthalmol. Vis. Sci. 38: 569–578.

    Google Scholar 

  • Koretz, J. F., Cook, C. A., Kaufman, P. L., 2001a, Aging of the human lens: Changes in lens shape upon accommodation and with accommodative loss. J. Opt. Soc. Am. A Opt. Image Sci. Vis., in press.

    Google Scholar 

  • Koretz, J. F., Cook, C. A., Kaufman, P. L., 2001b, Aging of the human lens: changes in lens shape at zero-diopter accommodation, I Opt. Soc. Am. A Opt. Image Sci. Vis. 18: 265–272.

    Article  Google Scholar 

  • Koretz, J. F., Cook, C. A., 2001c, Aging of the optics of the human eye: Lens refraction models and principal plane locations, Opt. Vis. Sci.,in press

    Google Scholar 

  • Koretz, J. F., Cook, C. A., Kuszak, J. R., 1994, The zones of discontinuity in the human lens: development and distribution with age, Vis. Res. 34: 2955–2962.

    Article  Google Scholar 

  • Koretz, J. F., Handelman, G. H., 1986, The “lens paradox” and image formation in accommodating human eyes, in: Topics in Aging Research in Europe, vol. 6, The Lens: Transparency and Cataract, pp. 57–64.

    Google Scholar 

  • Koretz, J. F., Handelman, G. H., 1988, How the human eye focuses, Sci. Am. 259: 92–99.

    Article  Google Scholar 

  • Koretz, J. F., Handelman, G. H., Brown, N. P., 1984, Analysis of human crystalline lens curvature as a function of accommodative state and age. Vis. Res. 24: 1141–1151.

    Article  Google Scholar 

  • Koretz, J. F., Kaufman, P. L., Neider, M. W., Goeckner, P. A., 1989a, Accommodation and presbyopia in the human eye—aging of the anterior segment, Vis. Res. 29: 1685–1692.

    Article  Google Scholar 

  • Koretz, J. F., Kaufman, P. L., Neider, M. W., Goeckner, P. A., 1989b, Accommodation and presbyopia in the human eye, 1: Evaluation of in vivo measurement techniques, Applied Optics, 28: 1097–1102.

    Google Scholar 

  • Koretz, J. F., Rogot, A., Kaufman, P. L., 1995, Physiological strategies for emmetropia, Trans. Am. Ophthalmol. Soc. 93: 105–118; discussion 118–122.

    Google Scholar 

  • Kuszak, J. R., 1995, The ultrastructure of epithelial and fiber cells in the crystalline lens, Int. Rev. Cytol. 163: 305–350.

    Article  Google Scholar 

  • Kuszak, J. R., Peterson, K. L., Sivak, J. G., Herbert, K. L., 1994, The interrelationship of lens anatomy and optical quality, B. Primate lenses, Exp. Eye Res. 59: 521–535.

    Article  Google Scholar 

  • Kuszak, J. R., Sivak, J. G., Weerheim, J. A., 1991, Lens optical quality is a direct function of lens sutural architecture [published erratum appears in Invest Ophthalmol Vis Sci 1992 May;33(6):2076–7], Invest. Ophthalmol. Vis. Sci. 32: 2119–2129.

    Google Scholar 

  • Liang, J., Grimm, B., Goelz, S., Bille, J. F., 1994, Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor, J. Opt. Soc. Am. A. 11: 1949–1957.

    Google Scholar 

  • Lou, M. F., Dickerson, J. E., Jr., 1992, Protein-thiol mixed disulfides in human lens, Exp. Eye Res. 55: 889–896

    Article  Google Scholar 

  • Lou, M. F., Dickerson, J. E., Jr., Tung, W. H., Wolfe, J. K., Chylack, L. T., Jr., 1999, Correlation of nuclear color and opalescence with protein S-thiolation in human lenses, Exp. Eye Res. 68: 547–552.

    Article  Google Scholar 

  • Lutze, M., Bresnick, G. H., 1991, Lenses of diabetic patients “yellow” at an accelerated rate similar to older normals. Invest. Ophthalmol. Vis. Sci. 32: 194–199.

    Google Scholar 

  • Miller, D. T., Williams, D. R., Morris, G. M., Liang, J., 1996, Images of cone photoreceptors in the living human eye, Vis. Res. 36: 1067–1079.

    Article  Google Scholar 

  • Moffat, B. A., Landman, K. A., Truscott, R. J., Sweeney, M. H., Pope, J. M., 1999, Age-related changes in the kinetics of water transport in normal human lenses, Exp. Eye Res. 69: 663–669.

    Article  Google Scholar 

  • Mufti, D. O., Zadnik, K., Fusaro, R. E., Friedman, N. E., Sholtz, R. I., Adams, A. J., 1998, Optical and structural development of the crystalline lens in childhood, Invest. Ophthalmol. Vis. Sci. 39: 120–133.

    Google Scholar 

  • Occhipinti, J. R., Mosier, M. A., Burstein, N. L., 1986, Autofluorescence and light transmission in the aging crystalline lens, Ophthalmologica. 192: 203–209.

    Article  Google Scholar 

  • Pierscionek, B. K., Chan, D. Y., 1989, Refractive index gradient of human lenses, Optom. Vis. Sci. 66: 822–829.

    Article  Google Scholar 

  • Pokorny, J., Smith, V. C., Lutze, M., 1987, Aging of the human lens, Appl. Opt. 26: 1437 1440.

    Google Scholar 

  • Pomerantzeff, O., Dufault, P., Goldstein, R., 1983, Wide-angle optical model of the eye, in: Advances in Diagnostic Visual Optics, Springer-Verlag, Berlin, pp. 12–21.

    Google Scholar 

  • Pomerantzeff, O., Fish, H., Govignon, J., Schepens, C. L., 1971, Wide angle optical model of the human eye, Ann. Ophthalmol. 3: 815–819.

    Google Scholar 

  • Siebinga, I., Vrensen, G. F., De Mul, F. F., Greve, J., 1991, Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy, Exp. Eye Res. 53: 233–239.

    Article  Google Scholar 

  • Siebinga, I., Vrensen, G. F., Otto, K., Puppels, G. J., De Mul, F. F., Greve, J., 1992, Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study. Exp. Eye Res. 54: 759–767.

    Article  Google Scholar 

  • Smith, G., Atchison, D. A., Pierscionek, B. K., 1992, Modeling the power of the aging human eye, J. Opt. Soc. Am. A. 9: 2111–2117.

    Article  Google Scholar 

  • Smith, G., Pierscionek, B. K., Atchison, D. A., 1991, The optical modelling of the human lens, Ophthal. Physiol. Opt. 11: 359–369.

    Article  Google Scholar 

  • Sorsby, A., Benjamin, B., Davey, J. B., et al., 1957, Emmetropia and its aberrations, vol. 293, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Sorsby, A., Benjamin, B., Sheridan, M., 1961, Refraction and its components during the growth of the eye from the age of three, vol. 301, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Sparrow, J. M., Hill, A. R., Ayliffe, W., Bron, A. J., Brown, N. P., 1988, Human lens nuclear colour matching and brunescence grading in vivo, Int. Ophthalmol. 11: 139–149.

    Google Scholar 

  • Strenk, S. A., Semmlow, J. L., Strenk, L. M., Munoz, P., Gronlund-Jacob, J., DeMarco, J. K., 1999, Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study Invest. Ophthalmol. Vis. Sci. 40: 1162–1169.

    Google Scholar 

  • Taylor, V. L., al-Ghoul, K. J., Lane, C. W., Davis, V. A., Kuszak, J. R., Costello, M. J., 1996, Morphology of the normal human lens, Invest. Ophthalmol. Vis. Sci. 37: 1396–1410.

    Google Scholar 

  • Teesalu, P., Airaksinen, P. J., Tuulonen, A., Nieminen, H., Alanko, H., 1997, Fluorometry of the crystalline lens for correcting blue-on-yellow perimetry results, Invest. Ophthalmol. Vis. Sci. 38: 697–703.

    Google Scholar 

  • Thibos, L. N., Hong, X., 1999, Clinical applications of the Shack-Hartmann aberrometer, Optom. Vis. Sci. 76: 817–825.

    Article  Google Scholar 

  • Willekens, B., Vrensen, G., 1981, The three-dimensional organization of lens fibers in the rabbit. A scanning electron microscopic reinvestigation, Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 216: 275–289.

    Article  Google Scholar 

  • Xu, J., Pokomy, J., Smith, V. C., 1997, Optical density of the human lens, J. Opt. Soc. Am. A. 14: 953–960.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koretz, J. (2002). Models of the Lens and Aging Effects. In: Hung, G.K., Ciuffreda, K.J. (eds) Models of the Visual System. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5865-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5865-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3377-5

  • Online ISBN: 978-1-4757-5865-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics