Models of the Lens and Aging Effects

  • Jane Koretz
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


The crystalline lens of the human visual system provides the variable refractive power needed for focus by the eye at all distances. Of the major refractive tissues, only the normal lens exhibits a uniquely specific and reproducible development path with increasing age. Optical modeling of the process of image formation on the retina thus relies on accurate and complete descriptions of the age dependence of lens shape, curvature, placement within the globe relative to the cornea and retina, and refractive index gradient. Other contexts in which an optical model of the lens may be important include studies of the posterior of the globe, and especially the retina, where changes in lens transparency, color, and refractive power could affect images and spectra in this region. Finally, the recent interest by both vision scientists and refractive surgeons in improving visual resolution to its theoretical limit (also known as “super-vision”), using the Shack-Hartmann method for collection of the wavefront and Zernike polynomials for its analysis, necessitates a more detailed examination of the changing contribution of the crystalline lens to overall image formation and image quality.


Crystalline Lens Human Lens Principal Plane Lens Surface Refractive Index Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Ghoul, K. J., Nordgren, R. K., Kuszak, A. J., Free!, C. D., Costello, M. J., Kuszak, J. R., 2001, Structural evidence of human nuclear fiber compaction as a function of ageing and cataractogenesis, Exp. Eye Res. 72: 199–214.CrossRefGoogle Scholar
  2. Applegate, R. A., 1998, Personal communication.Google Scholar
  3. Arbelaez, M. C., 2001, Super vision: dream or reality, J. Refract. Surg. 17: S211–218.Google Scholar
  4. Atchison, D. A., 2001, Personal communication.Google Scholar
  5. Atchison, D. A., Smith, G. 2000, Optics of the Human Eye, Butterworth-Heinemann, Boston. Bessems, G. J., De Man, B. M., Bours, J., Hoenders, H. J., 1986, Age-related variations in the distribution of crystallins within the bovine lens, Exp. Eye Res. 43: 1019–1030.Google Scholar
  6. Bessems, G. J., Hoenders, H. J., Wollensak, J., 1983, Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract, Exp. Eye Res. 37: 627–637.CrossRefGoogle Scholar
  7. Bettelheim, F. A., Paunovic, M., 1979, Light scattering of normal human lens I. Application of random density and orientation fluctuation theory, Biophys. J. 26: 85–99.CrossRefGoogle Scholar
  8. Blaker, J. W., 1971, Geometric Optics–The Maim* Method, New York: Marcel Dekker. Bours, J., Wegener, A., Hofmann, D., Fodisch, H. J., Hockwin, 0., 1990, Protein profiles of microsections of the fetal and adult human lens during development and ageing, Mech. Ageing Dev. 54: 13–27.Google Scholar
  9. Bron, A. J., Vrensen, G. F., Koretz, J., Maraini, G., Harding, J. J., 2000, The eing lens. Ophthalmologica. 214: 86–104.CrossRefGoogle Scholar
  10. Brown, N., 1972, An advanced slit-image camera, Br, J. Ophthalmol. 56: 624–631. Brown, N., 1973a, The change in shape and internal form of the lens of the eye on accommodation, Exp. Eye Res. 15: 441–459.CrossRefGoogle Scholar
  11. Brown, N., 1973b, Quantitative slit-image photography of the anterior chamber, Trans. Ophthalmol. Soc. U. K. 93: 277–86.Google Scholar
  12. Brown, N., 1974, The change in lens curvature with age, Exp. Eye Res. 19: 175–183.CrossRefGoogle Scholar
  13. Brown, N. A., Sparrow, J. M., Bron, A. J., 1988, Central compaction in the process of lens growth as indicated by lamellar cataract, Br. J. Ophthalmol. 72: 538–544CrossRefGoogle Scholar
  14. Brown, N. P., Koretz, J. F., Bron, A. J., 1999, The development and maintenance of emmetropia, Eye. 13: 83–92.CrossRefGoogle Scholar
  15. Chylack, L. T., Jr., Wolfe, J. K., Friend, J., Khu, P. M., Singer, D. M., et al., 1993, Quantitating cataract and nuclear brunescence, the Harvard and LOCS systems, Optom. Vis. Sci. 70: 886–895.CrossRefGoogle Scholar
  16. Cook, C. A., Koretz, J. F., 1991, Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform, Applied Optics. 30: 2088–2099CrossRefGoogle Scholar
  17. Cook, C. A., Koretz, J. F., 1995, Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox, Technical Series on Vision Science and Its Applications (Op. Soc. Am.),pp. 138141.Google Scholar
  18. Cook, C. A., Koretz, J. F., 1998, Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I.Google Scholar
  19. Image processing methods, J Opt, Soc. Am. A Opt. Image Sci. Vis. 15: 1473–1485.Google Scholar
  20. Cook, C. A., Koretz, J. F., Pfahnl, A., Hyun, J., Kaufman, P. L., 1994, Aging of the human crystalline lens and anterior segment, Vis. Res. 34: 2945–2954.CrossRefGoogle Scholar
  21. Dayson, H., 1990, Dayson’s Physiology of the Eye, 5th Ed. ed. New York: Pergamon Press Dubbelman, M., Van der Heijde, G. L., 2001, The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox, Vis. Res. 41: 1867–1877.Google Scholar
  22. Fagerholm, P. P., Philipson, B. T., Lidstrom, B., 1981, Normal human lenses–the distribution of protein, Exp. Eye Res. 33: 615–620.CrossRefGoogle Scholar
  23. Fu, S. C., Su, S. W., Wagner, B. J., Hart, R., 1984, Characterization of lens proteins. IV. Analysis of soluble high molecular weight protein aggregates in human lenses, Exp. Eye Res. 38: 485–495.CrossRefGoogle Scholar
  24. Gaillard, E. R., Zheng, L., Merriam, J. C., Dillon, J., 2000, Age-related changes in the absorption characteristics of the primate lens, Invest. Ophthalmol. Vis. Sci. 41: 1454–1459.Google Scholar
  25. Garland, D. L., Duglas-Tabor, Y., Jimenez-Asensio, J., Datiles, M. B., Magno, B., 1996, The nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and introduction of a new method of lens dissection, Exp. Eye Res. 62: 285–291.CrossRefGoogle Scholar
  26. Guirao, A., Williams, D. R., Cox, I. G., 2001, Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18: 1003–1015.CrossRefGoogle Scholar
  27. Hong, X., Thibos, L. N., 2000, Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery, J. Refract. Surg. 16: S647–650.Google Scholar
  28. Howland, H. C., 1994, Physiological Optics, in: Principles and Practice of Ophthalmology: Basic Sciences, ed. D. M. Albert and F. A. Jakobiec, W. B. Saunders Company, Philadelphia, PA.Google Scholar
  29. Johnson, C. A., Howard, D. L., Marshall, D., Shu, H., 1993, A noninvasive video-based method for measuring lens transmission properties of the human eye, Optom. Vis. Sci. 70: 944–955.CrossRefGoogle Scholar
  30. Klein, M. V., Furtak, T. E., 1986, Optics, John Wiley and Sons, New York, N.Y.Google Scholar
  31. Koretz, J. F., 2000, Development and aging of human visual focusing mechanisms, in: Trends in Optonics and Photonics: Vision Science and Its Applications, ed. V.Google Scholar
  32. Lakshminarayanan, Optical Society of America, Washington, D.C. 35: 246–258.Google Scholar
  33. Koretz, J. F., Cook, C. A., Kaufman, P. L., 1997, Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus, Invest. Ophthalmol. Vis. Sci. 38: 569–578.Google Scholar
  34. Koretz, J. F., Cook, C. A., Kaufman, P. L., 2001a, Aging of the human lens: Changes in lens shape upon accommodation and with accommodative loss. J. Opt. Soc. Am. A Opt. Image Sci. Vis., in press. Google Scholar
  35. Koretz, J. F., Cook, C. A., Kaufman, P. L., 2001b, Aging of the human lens: changes in lens shape at zero-diopter accommodation, I Opt. Soc. Am. A Opt. Image Sci. Vis. 18: 265–272.CrossRefGoogle Scholar
  36. Koretz, J. F., Cook, C. A., 2001c, Aging of the optics of the human eye: Lens refraction models and principal plane locations, Opt. Vis. Sci.,in pressGoogle Scholar
  37. Koretz, J. F., Cook, C. A., Kuszak, J. R., 1994, The zones of discontinuity in the human lens: development and distribution with age, Vis. Res. 34: 2955–2962.CrossRefGoogle Scholar
  38. Koretz, J. F., Handelman, G. H., 1986, The “lens paradox” and image formation in accommodating human eyes, in: Topics in Aging Research in Europe, vol. 6, The Lens: Transparency and Cataract, pp. 57–64.Google Scholar
  39. Koretz, J. F., Handelman, G. H., 1988, How the human eye focuses, Sci. Am. 259: 92–99.CrossRefGoogle Scholar
  40. Koretz, J. F., Handelman, G. H., Brown, N. P., 1984, Analysis of human crystalline lens curvature as a function of accommodative state and age. Vis. Res. 24: 1141–1151.CrossRefGoogle Scholar
  41. Koretz, J. F., Kaufman, P. L., Neider, M. W., Goeckner, P. A., 1989a, Accommodation and presbyopia in the human eye—aging of the anterior segment, Vis. Res. 29: 1685–1692.CrossRefGoogle Scholar
  42. Koretz, J. F., Kaufman, P. L., Neider, M. W., Goeckner, P. A., 1989b, Accommodation and presbyopia in the human eye, 1: Evaluation of in vivo measurement techniques, Applied Optics, 28: 1097–1102.Google Scholar
  43. Koretz, J. F., Rogot, A., Kaufman, P. L., 1995, Physiological strategies for emmetropia, Trans. Am. Ophthalmol. Soc. 93: 105–118; discussion 118–122.Google Scholar
  44. Kuszak, J. R., 1995, The ultrastructure of epithelial and fiber cells in the crystalline lens, Int. Rev. Cytol. 163: 305–350.CrossRefGoogle Scholar
  45. Kuszak, J. R., Peterson, K. L., Sivak, J. G., Herbert, K. L., 1994, The interrelationship of lens anatomy and optical quality, B. Primate lenses, Exp. Eye Res. 59: 521–535.CrossRefGoogle Scholar
  46. Kuszak, J. R., Sivak, J. G., Weerheim, J. A., 1991, Lens optical quality is a direct function of lens sutural architecture [published erratum appears in Invest Ophthalmol Vis Sci 1992 May;33(6):2076–7], Invest. Ophthalmol. Vis. Sci. 32: 2119–2129.Google Scholar
  47. Liang, J., Grimm, B., Goelz, S., Bille, J. F., 1994, Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor, J. Opt. Soc. Am. A. 11: 1949–1957.Google Scholar
  48. Lou, M. F., Dickerson, J. E., Jr., 1992, Protein-thiol mixed disulfides in human lens, Exp. Eye Res. 55: 889–896CrossRefGoogle Scholar
  49. Lou, M. F., Dickerson, J. E., Jr., Tung, W. H., Wolfe, J. K., Chylack, L. T., Jr., 1999, Correlation of nuclear color and opalescence with protein S-thiolation in human lenses, Exp. Eye Res. 68: 547–552.CrossRefGoogle Scholar
  50. Lutze, M., Bresnick, G. H., 1991, Lenses of diabetic patients “yellow” at an accelerated rate similar to older normals. Invest. Ophthalmol. Vis. Sci. 32: 194–199.Google Scholar
  51. Miller, D. T., Williams, D. R., Morris, G. M., Liang, J., 1996, Images of cone photoreceptors in the living human eye, Vis. Res. 36: 1067–1079.CrossRefGoogle Scholar
  52. Moffat, B. A., Landman, K. A., Truscott, R. J., Sweeney, M. H., Pope, J. M., 1999, Age-related changes in the kinetics of water transport in normal human lenses, Exp. Eye Res. 69: 663–669.CrossRefGoogle Scholar
  53. Mufti, D. O., Zadnik, K., Fusaro, R. E., Friedman, N. E., Sholtz, R. I., Adams, A. J., 1998, Optical and structural development of the crystalline lens in childhood, Invest. Ophthalmol. Vis. Sci. 39: 120–133.Google Scholar
  54. Occhipinti, J. R., Mosier, M. A., Burstein, N. L., 1986, Autofluorescence and light transmission in the aging crystalline lens, Ophthalmologica. 192: 203–209.CrossRefGoogle Scholar
  55. Pierscionek, B. K., Chan, D. Y., 1989, Refractive index gradient of human lenses, Optom. Vis. Sci. 66: 822–829.CrossRefGoogle Scholar
  56. Pokorny, J., Smith, V. C., Lutze, M., 1987, Aging of the human lens, Appl. Opt. 26: 1437 1440.Google Scholar
  57. Pomerantzeff, O., Dufault, P., Goldstein, R., 1983, Wide-angle optical model of the eye, in: Advances in Diagnostic Visual Optics, Springer-Verlag, Berlin, pp. 12–21.Google Scholar
  58. Pomerantzeff, O., Fish, H., Govignon, J., Schepens, C. L., 1971, Wide angle optical model of the human eye, Ann. Ophthalmol. 3: 815–819.Google Scholar
  59. Siebinga, I., Vrensen, G. F., De Mul, F. F., Greve, J., 1991, Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy, Exp. Eye Res. 53: 233–239.CrossRefGoogle Scholar
  60. Siebinga, I., Vrensen, G. F., Otto, K., Puppels, G. J., De Mul, F. F., Greve, J., 1992, Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study. Exp. Eye Res. 54: 759–767.CrossRefGoogle Scholar
  61. Smith, G., Atchison, D. A., Pierscionek, B. K., 1992, Modeling the power of the aging human eye, J. Opt. Soc. Am. A. 9: 2111–2117.CrossRefGoogle Scholar
  62. Smith, G., Pierscionek, B. K., Atchison, D. A., 1991, The optical modelling of the human lens, Ophthal. Physiol. Opt. 11: 359–369.CrossRefGoogle Scholar
  63. Sorsby, A., Benjamin, B., Davey, J. B., et al., 1957, Emmetropia and its aberrations, vol. 293, Her Majesty’s Stationery Office, London.Google Scholar
  64. Sorsby, A., Benjamin, B., Sheridan, M., 1961, Refraction and its components during the growth of the eye from the age of three, vol. 301, Her Majesty’s Stationery Office, London.Google Scholar
  65. Sparrow, J. M., Hill, A. R., Ayliffe, W., Bron, A. J., Brown, N. P., 1988, Human lens nuclear colour matching and brunescence grading in vivo, Int. Ophthalmol. 11: 139–149.Google Scholar
  66. Strenk, S. A., Semmlow, J. L., Strenk, L. M., Munoz, P., Gronlund-Jacob, J., DeMarco, J. K., 1999, Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study Invest. Ophthalmol. Vis. Sci. 40: 1162–1169.Google Scholar
  67. Taylor, V. L., al-Ghoul, K. J., Lane, C. W., Davis, V. A., Kuszak, J. R., Costello, M. J., 1996, Morphology of the normal human lens, Invest. Ophthalmol. Vis. Sci. 37: 1396–1410.Google Scholar
  68. Teesalu, P., Airaksinen, P. J., Tuulonen, A., Nieminen, H., Alanko, H., 1997, Fluorometry of the crystalline lens for correcting blue-on-yellow perimetry results, Invest. Ophthalmol. Vis. Sci. 38: 697–703.Google Scholar
  69. Thibos, L. N., Hong, X., 1999, Clinical applications of the Shack-Hartmann aberrometer, Optom. Vis. Sci. 76: 817–825.CrossRefGoogle Scholar
  70. Willekens, B., Vrensen, G., 1981, The three-dimensional organization of lens fibers in the rabbit. A scanning electron microscopic reinvestigation, Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 216: 275–289.CrossRefGoogle Scholar
  71. Xu, J., Pokomy, J., Smith, V. C., 1997, Optical density of the human lens, J. Opt. Soc. Am. A. 14: 953–960.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jane Koretz
    • 1
  1. 1.Center for Biophysics and Dept. of BiologyRensselaer Polytechnic Institute Science CenterTroyUSA

Personalised recommendations