Skip to main content

Models of Refractive Error Development

  • Chapter
Models of the Visual System

Abstract

Clarity of the visual image is a vital component of ocular health. A common method for assessing image clarity is to measure distance visual acuity. The development of an uncorrected refractive error, however, reduces visual acuity, and in turn adversely impacts upon the quality of ocular health. This chapter discusses various analytical approaches taken in the understanding of refractive error development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. W., and McBrien, N. A. 1992, Prevalence of myopia and myopic progression in a population of clinical microscopists, Optom. Vis. Sc 69: 467–473.

    Google Scholar 

  • Alward, W.L., Bender, T.R., Demske, J.A., and Hall, D.B., 1985, High prevalence of myopia among young adult Yupik Eskimo, Can. J. Ophthalmol. 20: 241–245.

    Google Scholar 

  • Avetisov, E. S., Savitskaya, N. F., Vinetskaya, M. I., and lomdina, E. N., 1984, A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups, Metab. Pediatr. Syst. Ophthalmol. 7: 183–188.

    Google Scholar 

  • Bartmann, M., and Schaeffel, F., 1994, A simple mechanism for emmetropization without cues from accommodation or colour, Vis. Res. 34: 873–876.

    Google Scholar 

  • Bennett, A. G., and Rabbetts, R.B., 1989, Clinical Visual Optics, Butterworth-Heinemann, Woburn, MA, pg. 75.

    Google Scholar 

  • Mackie, C. A. and, Howland, H. C., 1999, Extension of the Flitcroft model of emmetropization: inclusion of pupil size, Ophthal. Physiol. Opt. 19: 112–125.

    Google Scholar 

  • Bradley, D. V., Fernandes, A., Tigges, M., and Boothe, R.G., 1996, Diffuser contact lenses retard axial elongation in infant rhesus monkeys, Vis. Res. 36: 509–514.

    Google Scholar 

  • Castrén, J. A., and Pohjola, S., 1961a, Refraction and scleral rigidity, Acta Ophthalmol. 39: 1011–1014.

    Article  Google Scholar 

  • Castrén, J. A., and Pohjola, S., 1961b, Scleral rigidity in puberty, Acta Ophthalmol. 39: 1015–1019.

    Article  Google Scholar 

  • Cheng, H.-M., Omah, S. S., and Kwong, K. K., 1992, Shape of the myopic eye as seen with high-resolution magnetic resonance imaging, Optom. Vis. Sci. 69: 698–701.

    Google Scholar 

  • Christiansen, A. M. and Wallman, J., 1991, Evidence that increased scleral growth underlies visual deprivation myopia in chicks, Invest. Ophthal. Vis. Sci., 32: 2134–2150.

    Google Scholar 

  • Ciuffreda, K. J., 1991, Accommodation and its anomalies, in: Vision and Visual Dysfunction: Visual Optics and Instrumentation, Vol. 1, W. N. Charman, ed., Macmillan, London, pp. 231–279.

    Google Scholar 

  • Ciuffreda, K. J., 1998, Accommodation, pupil, and presbyopia, in: Borish’s Clinical Refraction, W. J. Benjamin, ed,, W. B. Saunders Co, Philadelphia, PA, pp. 77–120.

    Google Scholar 

  • Ciuffreda, K. J., Kenyon R. V., 1983, Accommodative vergence and accommodation in normals, amblyopes, and strabiemics, in: Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor and K. J. Ciuffinda, eds., Butterworths, Boston, MA, pp. 101–173.

    Google Scholar 

  • Ciuffreda, K. J., and Wallis, D. M., 1998, Myopes show increased susceptibility to nearwork aftereffects, Invest. Ophthal. Vis. Sci. 39: 1797–1803.

    Google Scholar 

  • Curtin, B. J., 1985, The etiology of myopia, in: The Myopias: Basic Science and Clinical Management, Harper and Row, Philadel. PA, pp. 61–151.

    Google Scholar 

  • Dowling, J. E., 1996, Retinal processing of vision, in Comprehensive Human Physiology: From Cellular Mechanisms to Integration, Vol. 1, Greger R and U. Windhorst, eds., Springer-Verlag, Berlin, pp. 773–778.

    Chapter  Google Scholar 

  • Fledelius, H. C., and Stubgaard, M., 1986, Changes in refraction and corneal curvature during growth and adult life. A cross-sectional study, Acta Ophthalmol. 64: 487–491.

    Google Scholar 

  • Flitcroft, D. I., 1998, A model of the contribution of oculomotor and optical factors to emmetropization and myopia, Vis. Res., 38: 2869–2879.

    Google Scholar 

  • Goh, W.S., and Lam, C.S., 1994, Changes in refractive trends and optical components of Hong Kong Chinese aged 19–39, Ophthal. Physiol. Opt. 14: 378–382.

    Google Scholar 

  • Goldschmidt, E., 1968, On the etiology of myopia–an epidemiological study. Acta Ophthalmol. 98 (suppl): 1–72.

    Google Scholar 

  • Goss, D. A., and Erickson, P., 1987, Meridional corneal components of myopia progression in young adults and children, Am. J. Optom. Physiol. Opt. 64: 475–481.

    Google Scholar 

  • Goss, D. A., Hampton, M. J., and Wickham, M. G., 1988, Selected review on genetic factors in myopia, J. Am. Optom. Assoc. 59: 875–884.

    Google Scholar 

  • Goss, D. A., and Jackson, T. W., 1993, Cross-sectional study of changes in the ocular components in school children, Appl. Opt. 32: 4169–4173.

    Google Scholar 

  • Goss, D. A., and Wickham, M. G., 1995, Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization, Doc. Ophthalmol. 90: 341–375.

    Google Scholar 

  • Goss, D. A., and Winkler, R. L., 1983, Progression of myopia in youth: age of cessation, Am. J. Optom. Physiol. Opt. 60: 651–658.

    Google Scholar 

  • Gottlieb, M. D., Joshi, H. B., and Nickla, D. L., 1990, Scleral changes in chicks with form-deprived myopia, Curr. Eye Res. 9: 1157–1165.

    Google Scholar 

  • Grosvenor, T., and Goss, D. A., 1998, Role of the cornea in emmetropia and myopia, Optom. Vis. Sci. 75: 132–145.

    Google Scholar 

  • Grosvenor, T., and Goss, D. A., 1999, Clinical Management of Myopia. Butterworth-Heinemann, Boston, MA, pp. 49–62.

    Google Scholar 

  • Gwiazda, J., Thorn F., Bauer J., and Held, R., 1993, Enunetropization and the progression of manifest refraction in children followed from infancy to puberty, Clin. Vis. Sci. 8: 337–344.

    Google Scholar 

  • Hosaka, A., 1988, Population studies–myopia experience in Japan, Acta Ophthalmol (Sapp) (Kbh), 185: 37–40.

    Google Scholar 

  • Hung, G. K., 1990, Fixation disparity under open-and closed-loop accommodation, Ophthal. Physiol. Opt. 10: 211–214.

    Google Scholar 

  • Hung, G. K., 1992. Adaptation model of accommodation and vergence, Ophthal. Physiol. Opt. 12: 319–326.

    Google Scholar 

  • Hung, G. K., 1998, Sensitivity analysis of the stimulus-response function of a static nonlinear accommodation model, IEEE Trans Biomed Engin. 45: 335–341.

    Article  Google Scholar 

  • Hung, G. K., and Ciuffreda, K. J., 1999, Model of refractive error development, Cur. Eye. Res., 19: 41–52.

    Google Scholar 

  • Hung, G. K. and Ciuffreda, K. J., 2000a, Differential retinal-defocus magnitude during eye growth provides the appropriate direction signal, Med. Sci. Monitor. 6: 791–795.

    Google Scholar 

  • Hung, G. K., and Ciuffreda, K. J., 2000b, Quantitative analysis of the effect of near lens addition on accommodation and myopigenesis, Cur. Eye. Res. 20: 293–312.

    Google Scholar 

  • Hung, G. K., and Ciuffreda, K. J., 2000c, A unifying theory of refractive error development, Bull. Math. Biol. 62: 1087–1108.

    Google Scholar 

  • Iuvone, P. M., Tigges, M., Stone, R. A., Lambert, S., and Laties, A. M., 1991, Effect of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in primate model of myopia, Invest. Ophthal. Vis. Sci. 32: 1674–1677.

    Google Scholar 

  • Javitt, J. C., and Chiang, Y. P., 1994, The socioeconomic aspects of laser refractive surgery, Arch. Ophthalmol. 112: 1526–1530.

    Google Scholar 

  • Jiang, B. C. and Woessner, W. M., 1996, Increase in axial length is responsible for late-onset myopia, Optom. Vis. Sci. 73: 231–234.

    Google Scholar 

  • Kolb, H., 1994, The architecture of functional neural circuits in the vertebrate retina. The Proctor Lecture, Invest. Ophthalmol. Vis. Sci. 35: 2385–2404.

    Google Scholar 

  • Lam, C. S., Goh, W. S., Tang, Y. K., Tsui, K. K., Wong W. C., and Man, T. C., 1994, Changes in refractive trends and optical components of Hong Kong Chinese aged over 40 years, Ophthal. Physiol. Opt. 14: 383–388.

    Google Scholar 

  • Lin, L. L. K., Shih, Y. F., Lee, Y. C., Hung, P. T., and Hou, P. K., 1996, Changes in ocular refraction and its components among medical students - a 5-year longitudinal study, Optom. Vis. Sci. 73: 495–498.

    Google Scholar 

  • Kimura, T. 1965, Developmental change of the optical components in twins, Acta Soc. Ophthalmol. Jpn. 69: 963–969.

    Google Scholar 

  • Mahlman, H. E. 1982, Handbook of Federal Vision Requirements and Information. Professional Press, Chicago, IL, USA, pp. 8–18.

    Google Scholar 

  • Marzani, D., and Wallman, J., 1997, Growth of the two layers of the chick sclera is modulated reciprocally by visual conditions, Invest. Ophthal. Vis. Sci. 38: 1726–1739.

    Google Scholar 

  • McBrien, N. A., Gentle, A., and Cottriall, C., 1999, Optical correction of induced axial myopia in the tree shrew: implications for emmetropization, Optom. Vis. Sci. 76: 419–427.

    Google Scholar 

  • McBrien, N. A., and Millodot, M., 1986, The effect of refractive error on the accommodative response gradient, Ophthal. Physiol. Opt. 6: 145–149.

    Google Scholar 

  • Medina, A., 1987, A model of emmetropization, the effect of corrective lenses, Acta. Ophthalmol. 65: 585–571.

    Google Scholar 

  • Medina, A., and Fariza, E., 1993, Emmetropization as a first-order feedback system, Vis. Res. 33: 21–26.

    Google Scholar 

  • Mutti, D.D., Zadnik K., and Adams, A.J., 1996, Myopia. The nature vs nurture debate goes on, Invest. Ophthal. Vis. Sci. 37: 952–957.

    Google Scholar 

  • Norton, T. T., 1999, Animal models of myopia: learning how vision controls the size of the eye, Instit. Lab. Animal Res. Journal. 40: 59–77.

    Google Scholar 

  • Norton, T. T., and Rada, J. A., 1995, Reduced extracellular matrix in mammalian sclera with induced myopia, Vis. Res. 35: 1271–1281.

    Google Scholar 

  • O’Leary, D. J., Chung, K. M., and Mohikin, N., 2000, Undercorrection causes more rapid progression of myopia in children, Am. Acad. Optom. 2000 (Abstract), pg. 24.

    Article  Google Scholar 

  • O’Leary, D. J., Chung, K. M., and Othman, S., 1992, Contrast reduction without myopia induction in monkey, Invest. Ophthal. Vis. Sci. 33: S712.

    Google Scholar 

  • Ong, E., and Ciuffreda, K. J., 1995, Nearwork-induced transient myopia - a critical review, Doc. Ophthalmol. 91: 57–85.

    Google Scholar 

  • Ong, E., and Ciuffreda, K. J., 1997, Accommodation, Nearworic, and Myopia, Optometric Extension Program Foundation, Inc, Santa Ana, CA, pp. 76–96, 177–201.

    Google Scholar 

  • Ong, E., Ciuffreda, K. J., and Tannen, B., 1993, Static accommodation in congenital nystagmus, Invest. Ophthal. Vis. Sci. 34: 194–204.

    Google Scholar 

  • Pässinen, O., Hemminki, E., and Klemetti, A., 1989, Effect of spectacle use and accommodation on myopia progression: final results of a three-year randomised clinical trial among schoolchildren, Br. J. Ophthalmol. 73: 547–551.

    Google Scholar 

  • Phillips, J. R., and McBrien, N. A., 1995, Form deprivation myopia: elastic properties of the sclera. Ophthal. Physiol. Opt. 15: 357–362.

    Google Scholar 

  • Rada, J. A., McFarland, A. L., Comuet, P. K., and Hassell, J. R., 1992, Proteoglycan

    Google Scholar 

  • synthesis by scleral chondrocytes is modulated by a vision dependent mechanism, Cur. Eye Res. 11: 767–782.

    Google Scholar 

  • Reeder, A. P., and McBrien, N. A., 1993, Biochemical changes in the sclera of tree shrew with high degrees of experimental myopia, Ophthal. Physiol. Opt. 13: 105.

    Google Scholar 

  • Rosenfield, M., and Gilmartin, B., 1998, Myopia and nearwork: causation or merely association?, in: Myopia and Nearwork, M. Rosenfield and B. Gilmartin, eds., Butterworth-Heinemann, Oxford, pp. 193–206.

    Google Scholar 

  • Scammon, R. E., and Armstrong, E. L., 1925, On the growth of the human eyeball and optic nerve, I Comp. Neurol. 38: 165–219.

    Google Scholar 

  • Schaeffel, F., and Howland, H. C., 1988, Mathematical model of emmetropization in the chicken, I Opt. Soc. Am. A 5: 2080–2086.

    Google Scholar 

  • Siegwart, J. T. Jr., and Norton, T. T., 1999, Regulation of the mechanical properties of tree shrew sclera by the visual environment, Vis. Res. 39: 387–407.

    Google Scholar 

  • Smith, G., and Atchison, D. A., 1997, The Eye and Visual Optical Instruments, Cambridge Univ. Press, Cambridge, United Kingdom, pp. 274, 796.

    Chapter  Google Scholar 

  • Smith, E. L., and Hung, L. F., 1999, The role of optical defocus in regulating refractive development in infant monkeys, Vis. Res. 39: 1415–1435.

    Google Scholar 

  • Smith, E. L., and Hung, L. F., 2000, Form deprivation myopia in monkeys is a graded phenomenon, Vis. Res. 40: 371–381.

    Google Scholar 

  • Sorsby, A., Sheridan, M., and Leary, G. A., 1962, Refraction and Its Components in Twins, London: Her Majesty’s Stationary Service.

    Google Scholar 

  • Sperduto, R. D., Seigel, D., Roberts, J., and Rowland, M., 1983, Prevalence of myopia in the United States, Arch. Ophthalmol. 101: 405–407.

    Google Scholar 

  • Stark, L., 1968, Neurological Control Systems, Studies in Bioengineering, Plenum Press, New York, pp. 205–219.

    Book  Google Scholar 

  • Stone, R. A., Lin, T., and Laties, A. M., 1989, Retinal dopamine and form-deprivation myopia, Proc. Natl. Acad. Sci. 86: 704–706.

    Google Scholar 

  • Tigges, M., Tigges, J., Fernendes, A., Effers, H. M., and Gammon, J. A., 1990, Postnatal axial eye elongation in normal and visually deprived rhesus monkeys, Invest. Ophthal. Vis. Sci. 31: 1035–1046.

    Google Scholar 

  • Troilo, D., 1989, The Visual Control of Eye Growth in Chicks, Ph. D. Dissertation, Faculty of Biology, City University of New York, New York, NY.

    Google Scholar 

  • Troilo, D., Gottlieb, M. D., and Waltman, J., 1987, Visual deprivation causes myopia in chicks with optic nerve section, Cur. Eye Res. 6: 993–999.

    Google Scholar 

  • Troilo, D., Nickla, D. L., and Waltman, J., 2000a, Choroidal thickness changes during altered eye growth and refractive state in a primate, Invest. Ophthat Vis. Sci. 41: 1249–1258.

    Google Scholar 

  • Troilo, D., Nickla, D. L., and Wildsoet, C. F., 2000b, Form deprivation myopia in mature common Marmoset ( Callitbrix jaccbus ), Invest. Ophthal. Vis. Sci. 41: 2043–2049.

    Google Scholar 

  • Waltman, J., 1997,. Can myopia be prevented? in: 14111 Biennial Research to Prevent Blindness Science Writers Seminar in Ophthalmology, Research to Prevent Blindness, New York, pp. 50–52.

    Google Scholar 

  • Werblin, F., 1973, Control of sensitivity of the retina, Sei. Am. 228 (1): 71–79.

    Google Scholar 

  • Wick, B., 2000, On the etiology of refractive error–Parts I-III, J. Optom. Vis. Devel. 31: 5–21, 48–63, 93–99.

    Google Scholar 

  • Wildsoet, C. F., 1998, Structural correlates of myopia, in: Myopia and Nearwork, M. Rosenfield and B. Gilmartin, eds., Butterworth-Heinemann, Oxford, pp. 32–51.

    Google Scholar 

  • Wildsoet, C. F., and Collins, M. J., 2000, Competing defocus stimuli of opposite sign produce opposite effects in eyes with intact and sectioned optic nerves in the chick, Invest. Ophthal. Vis. Sci. 41: S738.

    Google Scholar 

  • Wildsoet, C. F., and Pettigrew, J. D., 1988, Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: Evidence for local control of eye growth, Clin. Vis. Sci. 3: 99–107.

    Google Scholar 

  • Wildwoet, C. F., and Waltman, J., 1995, Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks, Vis. Sei. 35: 1175–1194.

    Google Scholar 

  • Wilson, J. R., Fernandes, A., Chankler, C. V., Tigges, M., Boothe, R. G., and Gammon, J. A., 1987, Abnormal development of the axial length of aphakic monkey eyes, Invest. Ophthal. Vis. Sci. 28: 2096–2099.

    Google Scholar 

  • Winauer, J. A., Zhu, X., Park, T., and Waltman, J., 2000, Is myopic blur more important than sharp vision for positive-lens compensation? Invest. Ophthal. Vis. Sci. 41: S136.

    Google Scholar 

  • Windhorst, U., 1996, Specific networks of the cerebral cortex: functional organization and plasticity, in: Comprehensive Human Physiology: From Cellular Mechanisms to Integration. Vol. 1, R. Greger and U. Windhorst, eds., Springer-Verlag, Berlin, pp. 1105–1136.

    Chapter  Google Scholar 

  • Woodruff, M.E., and Samek M.J., 1977, A study of the prevalence of spherical equivalent refractive states and anisometropia in Amerind population in Ontario, Can. J. Public Health. 68: 414–424.

    Google Scholar 

  • Wu, M. M.-M., and Edwards, M. H., 1999, The effect of having myopic parents: An analysis of myopia in three generations, Optom. Vis. Sci. 76: 387–392.

    Google Scholar 

  • Yackle, K., and Fitzgerald, D. E., 1999, Emmetropization: an overview, J. Behay. Optom. 10: 38–43.

    Google Scholar 

  • Young, F.A., Leary, G.A., Baldwin, W.R., West, D.C., Box, R.A., Harris, E., and Johnson, C., 1969, The transmission of refractive errors within eskimo families, Am. J. Optom. Arch. Am. Acad. Optom. 46: 676–685.

    Google Scholar 

  • Zhang, M.-Z., Saw, S.-M., Hong, R.-Z., Fu, Z.-F., Yang, H., Shui, Y.-B., Yap, M. K. H., and Chew, S.-J., 2000, Refractive errors in Singapore and Xiamen, China - A comparative study in school children aged 6 to 7 years, Optom. Vis. Sci., 77: 302–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hung, G.K., Ciuffreda, K.J. (2002). Models of Refractive Error Development. In: Hung, G.K., Ciuffreda, K.J. (eds) Models of the Visual System. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5865-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5865-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3377-5

  • Online ISBN: 978-1-4757-5865-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics