Model of Visual Perceptual Space

  • Vasudevan Lakshminarayanan
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)

Abstract

Space is a fundamental concept in physics and psychology. We consider space around us to be 3-dimensional and Euclidean. Can the same be said about the representation of this world in our perceptual system? This 3- dimensional manifold1 of objects we are surrounded by have form and localization, in addition to characteristic qualities of color and brightness. (A brief definition of superscripted terms are given in the Notes (Section 16.4) at the end of the chapter). In a visual sensation, we are aware not only of a distribution of colors and brightness but also that certain of these qualities are combined into objects which have a definite geometric form and localization in a 3-dimensional space. This (the sensed space) is the visual space. The visual space is the final product of a long series of transformations/processes from the retina to the brain and it is coherent, self-organized, dynamic and complex (Indow 1991). Phenomenologically, it is articulated into individual objects, backgrounds and the “self”. The self is a percept that is due to visual and proprioceptive experiences. Other visual percepts arise from stimuli in physical space. Luneberg (1947, 1950), in his classic work on binocular vision, defined visual space as a space obtained by transforming, using a specific mapping, a physical space into a cyclopean egocentered space with orthogonal coordinates.

Keywords

Physical Space Visual Space Binocular Vision Perceptual Space Affine Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., Bazan, M., Schiffer, M., 1965, Introduction to general relativity, McGraw Hill, New York.MATHGoogle Scholar
  2. Blank, A. A., 1958, Analysis of experiments in binocular space perception, J. Opt. Soc. Am. 48: 911–925.MathSciNetCrossRefGoogle Scholar
  3. Blank, A. A., 1978, Metric geometry in human binocular perception — theory and fact, In: Leewenberg, E. and Buffart, H., (Eds) Formal theories of visual perception, Wiley, New York.Google Scholar
  4. Blumenfeld, W., 1913, Unterschugen über die schienbare grosse in sehraume, Zeitschri for psyhcologie and physiologie der sinnesargane, 65: 241–404.Google Scholar
  5. Caelli, T., 1977, Psychophysical interpretations and experimental evidence for the Hoffinan LTG/NP theory of perception. Cahiers de Psychologie, 20: 107–134.Google Scholar
  6. Caelli, T. 1981, Visual perception theory and practice, Pergamon Press, Oxford, U.K.Google Scholar
  7. Carlton, E. H., 1988, Connection between internal representation of rigid transformation and cortical activity patterns, Biol. Cybernetics, 59: 419–429.MathSciNetCrossRefMATHGoogle Scholar
  8. DeValois, K. K., Lakshminarayanan, V., Nygaard, R., Schlussel, S., Sladkey, J., 1988, Relative position comparisons between dissimilar patterns, paper TUR5, Technical Digest Series, Vol II, Optical Society of America, Washington, D.C.Google Scholar
  9. DeValois, K. K., Lakshminarayanan, V., Nygaard, R., Schlussel, S., Sladkey, J., 1989, Perceptual space as an elastic manifold, Inves. Opthal. Vis. Sci. ARVO supplement 30: 486.Google Scholar
  10. DeValois, K. K., Lakshminarayanan, V., Nygaard, R., Schlussel, S., Sladkey, J., 1990, Discrimination of relative spatial position, Vision Res. 30: 1649–1660.CrossRefGoogle Scholar
  11. Dirac, P. A. M., 1954, Letter, Sci. Monthly, 79 (#4).Google Scholar
  12. Dodwell, P., 1970, Visual pattern recognition, Holt, Reinhart and Winston, New York. Eisenhart, L. P., 1927, Non-Riemannian geometry, American Mathematical Society Colloquia Publications, Vol 8, American Mathematical Society, Providence, R. I.Google Scholar
  13. Foley, J. M., 1964, Desarguesian property in visual space, J. Opt. Soc. Am 54: 684–692. Hoffman, W. C., 1966, The Lie algebra of visual perception, J. Math. Psych., 3: 65–98, errata: ibid 4: 348–349.Google Scholar
  14. Hoffman, W. C., 1968, The neuron as a Lie group germ and a Lie group product, Quat. J. Applied. Math., 25: 423–441.MATHGoogle Scholar
  15. Hoffinan, W. C., 1970, Higher visual perception as a prolongation of the basic Lie transformation group, Math. Biosci., 6: 437–471.MathSciNetCrossRefGoogle Scholar
  16. Hoffman, W. C., 1977, An informal, historical description (with biography) of the LTG/NP, Cahiers de Psychologie, 20: 139–150.Google Scholar
  17. Hoffman, W. C., 1980, Subjective geometry and geometric psychology, Mathematical Modeling, 1: 349–367.CrossRefMATHGoogle Scholar
  18. Hoffman, W. C., 1984, Figural synthesis by vector fields: Geometric neuropsychology, In: Dodwell, P., Caelli, T., (Eds) Figural Synthesis, Erlbaum, Hillsdale, NJ.Google Scholar
  19. Indow, T., 1974, On geometry of frameless binocular perceptual space, Psychologia, 17: 5063.Google Scholar
  20. Indow, T., 1979, Alleys in visual space, J. Math. Psycho!. 19: 221–258.MathSciNetCrossRefMATHGoogle Scholar
  21. Indow, T., Watanabe, T., 1988, Alleys on an extensive apparent fronto-parallel plane: A second experiment, Perception 17: 647–666.CrossRefGoogle Scholar
  22. Indow, T., 1991, A critical review of Luneberg’s model with regard to global structure of visual space, Psychol. Rev. 98: 430–453Google Scholar
  23. Lakshminarayanan, V., Santhanam, T. S., 1995, Representation of Rigid Stimulus transformations by cortical activity patterns, In: Luce, D. R., D’Zmura, M., Hoffman, D., Ivesron, G. J., Romney, A. K., (Eds), Geometric representations of perceptual phenomena, Lawrence Erlbaum, Mahwah, N.J., pp. 61–68.Google Scholar
  24. Lakshminarayanan, V., Parthasarathy, R., DeValois, K. K., 2000, A generalized perceptual space, Neurol. Res. 22: 699–702.Google Scholar
  25. Luneberg, R. K., 1947, Mathematical analysis of binocular vision, Princeton University Press, Princeton, N.J.Google Scholar
  26. Luneberg, R. K., 1950, The metric of binocular visual space, J. Opt. Soc. Am. 40: 627–642.CrossRefGoogle Scholar
  27. MacLeod, D. A., Willer, J. D., 1995, Is there a visual space?, In: Luce, D. R., D’Zmura, M.,Hoffrnan, D., Ivesron, G. J., Romney, A. K., (Eds), Geometric representations of perceptual phenomena, Lawrence Erlbaum, Mahwah, N.J., pp. 47–60.Google Scholar
  28. Pedoe, D., 1976, Geometry and the liberal arts, Peregrine, New York.Google Scholar
  29. Schwartz, E. L., 1980, Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding, Vision Res. 20: 645–669.CrossRefGoogle Scholar
  30. Spivak, M., 1979, A comprehensive introduction to differential geometry, Publish or Perish, Inc., Berkeley, CA.Google Scholar
  31. Suppes, P., Krantz, D. H., Luce, D. R., Tversky, A., 1989, Foundations of measurements, Vol II: Geometrical, threshold and probabilistic representations, Academic Press, New York.Google Scholar
  32. Suppes, P., 1995, Some fundamental problems in the theory of visual space, In: Luce, D. R., D’Zmura, M., Hoffman, D., Ivesron, G. J., Romney, A. K., (Eds), Geometric representations of perceptual phenomena, Lawrence Erlbaum, Mahwah, N.J., pp. 37–45.Google Scholar
  33. Wagner, M., 1985, The metric of visual space, Perception and Psychophysics 38: 483–495.CrossRefGoogle Scholar
  34. Wheeler, J., 1990, Information, physics, quantum: The search for the links: In: Zurek, W. (Ed), Complexity, entropy and physics of information, Addison- Wesley, Reading, MA, pp. 3–28.Google Scholar
  35. Yamazaki, T., 1987, Non-Riemannian approach to geometry of visual space: An approach to affinely connected geometry to visual alleys and horopter, J. Math. Psycho!. 31: 270–298.CrossRefMATHGoogle Scholar
  36. Zhang, J., Wu, S., 1990, Structures of visual perception, Proc. Natl. Acad. Sci. USA 87: 7819–7823.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Vasudevan Lakshminarayanan
    • 1
  1. 1.School of OptometryUniversity of Missouri — St. LouisSt. LouisUSA

Personalised recommendations