Computational Models of Visual Attention

  • Scott B. Steinman
  • Barbara A. Steinman
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


It seems intuitively obvious what visual attention is, so much so that the first person to study attention, William James, did not provide a definition for attention, but simply made the assumption that “we all know what attention is” (James, 1890). However, the research of the past few decades has shown that this assumption is far from true. Attention is actually a complex process with several interacting subprocesses. It is carried out by extensive neural networks that interconnect many regions of the brain. A fundamental question we must ask is: why is so much neural machinery devoted to attention? A simple answer would be that so much sensory information is presented simultaneously to the brain that it would be impossible for all the information to be processed quickly enough to ensure its immediate use. For example, there are practical limits on how many distinct orientations, colors, sizes, depths and velocities at any possible retinal locus that can be.processed in parallel (for example, see Shiffrin and Gardner, 1972). Visual attention is therefore necessitated by the limited computational capacity of the human brain. Attention allows for the selective processing of one or more important visual stimuli while filtering out less critical information.


Visual Field Visual Search Receptive Field Visual Attention Selective Attention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, S., 1991, VISIT: An efficient computational model of human visual attention, ICSI Technical Report vol. 91–049. International Computer Science Institute, Berkeley, CA.Google Scholar
  2. Allman, J., Kaas, J. H., Lane, R. H., and Miezin, F. M., 1972, A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (aotus trivirgatus), Brain Res. 40: 291–302.Google Scholar
  3. Allman, J., Miezin, F. M., and McGuinness, E., 1985, Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons, Ann. Rev. Neurosci. 8: 407–430.Google Scholar
  4. Allport, D. A., 1980, Attention and performance, In: Cognitive Psychology: New Directions., G. Claxton, ed., Routledge and Kegan Paul, London.Google Scholar
  5. Anderson, C., and Essen, D. V., 1987, Shifter circuits: a computational strategy for dynamic aspects of visual processing, Proc. Natl. Acad. Sci.. U.S.A. 84: 6297–6301Google Scholar
  6. Arguin, M., Joanette, Y., and Cavanagh, P., 1993, Visual search for feature and conjunction targets with an attentional deficit, J. Cognit. Neurosci. 5: 436–452.Google Scholar
  7. Ball, K., Owsley, C., Soane, M. E., Roenker, D. L., and Bruni, J. R., 1993, Visual attention problems as a predictor of vehicle crashes in older drivers, Inv. Ophthalmol. Vis. Sci. 34: 3110–3123.Google Scholar
  8. Baloch, A. A., and Grossberg, S., 1997, A neural model of high-level motion processing: line motion and formotion dynamics, Vis. Res. 37: 3037–3059.Google Scholar
  9. Bender, D. B., 1981, Retinotopic organization of the macaque pulvinar, J. Neurophysiol. 46: 672–693.Google Scholar
  10. Bergen, J., and Julesz, B., 1983, Parallel versus serial processing in rapid pattern discrimination, Nature. 303: 696–698.Google Scholar
  11. Braun, J., and Sagi, D., 1990, Vision outside of the focus of attention, Percept. Psychophys. 48: 45–58.Google Scholar
  12. Braun, J., and Sagi, D., 1991, Texture-based tasks are little affected by a second task which requires peripheral or central attentive fixation, Perception. 303: 45–58.Google Scholar
  13. Bravo, M., and Blake, R., 1990, Preattentive vision and perceptual groups, Perception. 19: 515–522.Google Scholar
  14. Breitmeyer, B. G., and Ganz, L., 1976, Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression and information processing, Psycho!. Rev. 83: 1–36.Google Scholar
  15. Breitmeyer, B. G., 1991, Reality and relevance of sustained and transient channels in reading and reading disability, In: Oculomator Control and Cognitive Processes., R. Schmidt and D. Zambarbieri, eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  16. Carli, M., Robbins, T. W., Evenden, J. L., and Everitt, B. J., 1985, Effects of lesions to ascending noradregenergic neurones on performance of a 5-choice serial reaction time task; implications for theories of dorsal noradregenergic bundle function based on selective attention and arousal, Behay. Brain Res. 9: 361–380.Google Scholar
  17. Carpenter, G. A., and Grossberg, S., 1991, Pattern recognition by self-organizing neural networks. MIT Press, Cambridge, MA.Google Scholar
  18. Cavanagh, P., 1992, Attention-based motion perception, Science. 257: 1563–15 65.Google Scholar
  19. Cohen, R. A., 1993, The neuropsychology of attention. Plenum Press, New Yo rk.Google Scholar
  20. Colby, C. L., 1991, The neuroanatomy and neurophysiology of attention, J Child Neurol., Suppl. 6: S90 - S118.Google Scholar
  21. Connor, C. E., Gallant, J. L., and Van Essen, D., 1994, Modulation of receptive field properties in area V4 by shifts in focal attention, Inv. Ophthalmol. Vis. Sci. Suppl. 35: 2147.Google Scholar
  22. Conte, R., 1991, Attention disorders: reviews, In: Learning about Learning Disabilities., B. Y. L. Wong, ed., Academic Press, San Diego, CA, pp. 60–101.Google Scholar
  23. Corbetta, M., Miezin, F., Dobmeyer, S., Shulman, G., and Peterson, S., 1991, Selective and divided attention during visual discrimination of shape, color, speed: functional anatomy by positron emission tomography, J. Neurosci. 11: 2383–2402.Google Scholar
  24. Crick, F., 1984, The function of the thalamic reticular complex: the searchlight hypothesis, Proc. Natl. Acad. Sci., U.S.A. 81: 4586–4590.Google Scholar
  25. Crick, F., and Koch, C., 1990, Towards a neurobiological theory of consciousness, Seminars in the Neurosciences. 2: 263–275.Google Scholar
  26. Desimone, R., Wessinger, M., Thomas, L., and Schneider, W., 1990, Attentional control of visual perception: cortical and subcortical mechanisms, In: Cold Spring Harbor Symposium on Quantitative Biology, Vol. 60., Cold Spring Harbor Laboratory Press, New York, pp. 963–971.Google Scholar
  27. Desimone, R., 1992, Neural circuits for visual attention in the primate brain, In: Neural Networks for Vision and Image Processing., G. A. Carpenter and S. Grossberg, eds., MIT Press, Cambridge, MA.Google Scholar
  28. Desimone, R., and Duncan, J., 1995, Neural mechanisms of selective attention, Ann. Rev. Neurosci. 18: 193–222.Google Scholar
  29. DeValois, R. L., Albrecht, D. G., and Thorell, L. G., 1982, Spatial frequency selectivity of cells in macaque visual cortex, Vis. Res. 22: 545–559.Google Scholar
  30. Downing, C. J., and Pinker, S., 1985, The spatial structure of visual attention, In: Attention and Performance, Vol. XI., M. I. Posner and O. S. M. Marin, eds., Lawrence Erlbaum Associates Inc., Hillsdale, NJ, pp. 171–187.Google Scholar
  31. Downing, C. J., 1988, Expectancy and visual-spatial attention: effects on perceptual quality, Journal of Experimental Psychology and Human Perception. 14: 188–202.Google Scholar
  32. Enroth-Cugell, C., and Robson, D. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, 1 Physiol. 187: 517–552.Google Scholar
  33. Ericksen, C. W., and Collins, J. F., 1969, Temporal course of selective attention, Journal of Experimental Psychology and Human Perception. 80: 254–261.Google Scholar
  34. Ericksen, C. W., and Hoffinan, J. E., 1973, Selective attention: noise suppression or signal enhancement?, Bull. Psychonom. Soc. 4: 587–589.Google Scholar
  35. Ericksen, B. A., and Ericksen, C. W., 1974, Effect of noise letters upon identification of a target letter in a nonsearch task, Percept. Psychophys. 16: 143–149.Google Scholar
  36. Ericksen, C. W., and Yeh, Y., 1985, Allocation of attention in the visual field, Journal of Experimental Psychology and Human Perceptual Performance. 11: 583–597.Google Scholar
  37. Ericksen, C. W., and James, J. D. S., 1986, Visual attention within and around the field of focal attention: a zoom lens model, Percept. Psychophys. 40: 225–240.Google Scholar
  38. Ericksen, C. W., and Murphy, T. D., 1987, Movement of the attentional focus across the visual field: a critical look at the evidence, Percept. Psychophys. 42: 299–305.Google Scholar
  39. Feldman, J., and Ballard, D., 1982, Connectionist models and their properties, Cog. Sci. 6: 205–254.Google Scholar
  40. Fiorentini, A., Baumgartner, G., Magnussen, S., Schiller, P. H., and Thomas, J. P., 1990, The perception of brightness and darkness: relations to neuronal receptive fields, In: Visual Perception: The Neurophysiological Foundations., L. Spillmann and J. S. Werner, eds., Academic Press, San Diego, CA, pp. 129–161.Google Scholar
  41. Fischer, B., and Weber, H., 1993, Express saccades and visual attention, Behay. Brain Sci. 16: 553–567.Google Scholar
  42. Fortstl, H., and Sahakian, B. J., 1993, Thalamic radiodensity and cognitive performance in mild and moderate dementia of the Alzheimer type, J. Psychiatr. Neurosci. 18: 33–37.Google Scholar
  43. Goldberg, M. E., and Wurtz, R. H., 1972, Activity of superior colliculus in behaving monkey II. The effect of attention on neuronal responses, J. Neurophysiot 35: 560–574.Google Scholar
  44. Gray, C. M., and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci., U.S.A. 86: 1698–1702.Google Scholar
  45. Greenwood, P. M., and Parasuraman, R., 1997, Attention in aging and Alzheimers disease: behavior and neural systems, In: Attention, Development and Psychopathology., J. Enns and J. Burack, eds., Guilford Press, New York.Google Scholar
  46. Gross, C. G., 1973, Inferotemporal cortex and vision, Physiol. Psycho!. 5: 77–115.Google Scholar
  47. Grossberg, S., 1987a, Cortical dynamics of three-dimensional form, color and brightness perception: I. monocular theory, Percept. Psychophys. 41: 87–116.Google Scholar
  48. Grossberg, S., 1987b, Cortical dynamics of three-dimensional form color and brightness perception: II. binocular theory, Percept. Psychophys. 41: 117–158.Google Scholar
  49. Grossberg, S., 1988, Neural networks and natural intelligence. MIT Press, Cambridge, MA.Google Scholar
  50. Grossberg, S., Mingolla, E., and Ross, W. D., 1994, A neural theory of attentive visual search: interactions of boundary, surface, spatial and object representations, Psychol. Rev. 101: 470–489.Google Scholar
  51. Hasher, L., and Zacks, R. T., 1979, Automatic and effortful processes in memory, Journal of Experimental Psychology General. 108: 356–388.Google Scholar
  52. He, Z. J., and Nakayama, K., 1992, Surface vs. features in visual search, Nature. 359: 231–233.Google Scholar
  53. Helmholtz, H., 1867, Handbuch der Physiologischen Optik. L Voss, Hamburg.Google Scholar
  54. Hikosaka, O., Miyauchi, S., and Shimojo, S., 1993a, Voluntary and stimulus-induced attention detected as motion sensation, Perception. 22: 517–526.Google Scholar
  55. Hikosaka, O., Miyauchi, S., and Shimojo, S., 1993b, Focal visual attention produces illusory temporal order and motion sensation, Vis. Res. 33: 1219–1240.Google Scholar
  56. Hinton, G. E., 1981, Implementing semantic networks in parallel hardware, In: Parallel Models of Associative Memory., G. E. Hinton and J. A. Anderson, eds., Lawrence Erlbaum Associates Inc., Hillsdale, NJ, pp. 161–188.Google Scholar
  57. Holmes, G., 1918, Disorders of visual orientation, Brit. J. OphthalmoL 2: 449–468.Google Scholar
  58. Hubel, D., and Wiesel, T. N., 1974, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. NeuroL 158: 267–294.Google Scholar
  59. Humphreys, G. W., and Riddoch, M. J., 1992, Interactions between objects and space-vision revealed through neuropsychology, In: Attention and Performance, Vol. XIV., D. E. Meyers and S. Komblinn, eds., Lawrence Erlbaum Associates Inc., Hillsdale, NJ, pp. 143–162.Google Scholar
  60. Hung, G. K., Wilder, J., Curry, R., and Julesz, B., 1995, Simultaneous better than sequential for brief presentations, J. Opt. Soc. Am. 12: 441–449.Google Scholar
  61. Husain, M., 1991, Visuospatial and visuomotor functions of the posterior parietal lobe, in: Vision and Visual Dyslexia, Vol. 13., J. F. Stein, ed., MacMillan Reference Ltd., London.Google Scholar
  62. Jackson, S. R., Marrocco, R., and Posner, M. I., 1994, Networks of anatomical areas controlling visuospatial attention, Neural Networks. 7: 925–944.Google Scholar
  63. James, W., 1890, Principles of Psychology. Holt, New York.Google Scholar
  64. Jonides, J., and Yantis, S., 1988, Uniqueness of abrupt visual onset in capturing attention, Percept. Psychophys. 43: 346–354.Google Scholar
  65. Joseph, J. S., Chun, M. M., and Nakayama, K., 1997, Attentional requirements in a “preattentive” feature search task, Nature. 387: 805–807.Google Scholar
  66. Julesz, B., 1984, Toward an axiomatic theory of preattentive vision, In: Dynamic Aspects of Neocortical Function., G. M. Edelman W. E. Gall and W. M. Cowan, eds., Neurosciences Research Foundation, New York.Google Scholar
  67. Julesz, B., 1986, Texton gradients: the texton theory revisited, BioL Cybern. 54: 245–251.zbMATHGoogle Scholar
  68. Jung, R., and Spillmann, L., 1970, Receptive field estimation and perceptual integration in human vision, In: Early Experience and Visual Information Processing in Perceptual and Reading Disorders., F. A. Young and D. B. Lindsley, eds., National Academy Press, Washington, D.C.Google Scholar
  69. Kahneman, D., 1973, Attention and Effort. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  70. Kahneman, D., and Henik, A., 1981, Perceptual organization and attention, In: Perceptual Organization., M. Kubovy and J. R. Pomerantz, eds., Lawrence Erlbaum Associates Inc., Hillsdale, NJ.Google Scholar
  71. Karnath, H. O., 1997, Neural encoding of space in egocentric coordinates? Evidence for and limits of a hypothesis derived from patients with parietal lesions and neglect, In: Parietal Lobe Contributions to Orientation in 3-D Space., P. Their and H. O. Karnath, eds., Springer, Heidelberg, pp. 497–520.Google Scholar
  72. Keogh, B., and Margolis, J., 1976, Learn to labor and wait: attentional problems of children with learning disorders, J. Learing. Disability. 9: 276–286.Google Scholar
  73. Khurana, B., and Kowler, E., 1987, Shared attentional control of smooth eye movement and perception, Vis. Res. 27: 1603–1618.Google Scholar
  74. Kleffner, D. A., and Ramachandran, V. S., 1992, On the perception of shape from shading, Percept. Psychophys. 52: 18–36.Google Scholar
  75. Koch, C., and Ullman, S., 1985, Shifts in selective visual attention: towards the underlying neural circuitry, Hum. Neurobiol. 4: 219–227.Google Scholar
  76. Kreiter, A. K., and Singer, W., 1992, Oscillatory neuronal responses in the visual cortex of the awake macaque monkey, European J. Neurosci. 4: 369–375.Google Scholar
  77. Kriöse, B., and Julesz, B., 1989, The control and speed of shifts of attention, Vis. Res. 29: 1607–1619.Google Scholar
  78. Kuffler, S. W., 1953, Discharge patterns and functional organization of mammalian retina, J. Neurophysiol. 16: 37–68.Google Scholar
  79. LaBerge, D., and Brown, V., 1989, Theory of attentional operations in shape identification, Psychol. Rev. 96: 101–124.Google Scholar
  80. LaBerge, D., and Buchsbaum, M. S., 1990, Positron emission tomographie measurements of pulvinar activity during an attentional task, J. Neurosci. 10: 613–619.Google Scholar
  81. LaBerge, D., Carter, M., and Brown, V., 1992, A network simulation of thalamic network operations in selective attention, Neural Comp. 4: 318–331.Google Scholar
  82. LaBerge, D., 1995, Computational and anatomical models of selective attention in object identification, In: The Cognitive Neurosciences., M. S. Gazzaniga, ed., MIT Press, Cambridge, MA.Google Scholar
  83. Luck, S. J., Hillyard, L., and Desimone, R., 1997, Neural mechanisms of spatial selective attention in areas VI, V2 and V4 of macaque visual cortex, J. Neurophysiol. 77: 24–42.Google Scholar
  84. Mackeben, M., and Nakayama, K., 1993, Express attentional shifts, Vis. Res. 33: 85–90.Google Scholar
  85. Mangun, G. R., and Hillyard, S. A., 1991, Modulations of sensory-evoked brain potentials during visual-spatial priming, Journal of Experimental Psychology Human Perceptual Performance. 17: 1057–1074.Google Scholar
  86. Marcelja, S., 1980, Mathematical description of the responses of simple cortical cells, J. Opt. Soc. Am. 70: 1297–1300.MathSciNetGoogle Scholar
  87. Maunsell, J. H., Sklar, G., Nealy, T. A., and De Priest, D. D., 1991, Extraretinal representations in area V4 in the macaque monkey, Vis. Neurosci. 7: 561–573.Google Scholar
  88. Maunsell, J. H., and Ferrara, V. P., 1995, Attentional mechanisms in visual cortex, In: The Cognitive Neurosciences., M. S. Gazzaniga, ed., MIT Press, Cambridge, MA.Google Scholar
  89. Meslam, M. M., 1990, Large-scale neurocognitive networks and distributed processing for attention, language and memory, Ann. Neural. 28: 597–613.Google Scholar
  90. Miyauchi, S., Hikosaka, O., and Shimojo, S., 1992, Visual attention can be assessed by illusory line motion sensation, Inv. Ophthalmol. Vis. Sei. Suppl. 33: 1262.Google Scholar
  91. Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in the extrastriate cortex, Science. 229: 782–784.Google Scholar
  92. Morrow, L. A., and Ratcliff, G. C., 1988, The disengagement of covert attention and the neglect syndrome, Psychobiology. 16: 261–269.Google Scholar
  93. Motter, B. C., and Poggio, G. F., 1982, Spatial invariance of receptive field location in the presence of eye movements of fixation for neurons in monkey’s striate cortex, Soc. Neurosci. Abstr. 8: 707.Google Scholar
  94. Motter, B. C., 1993, Focal attention produces spatially selective processing in visual cortical areas V 1, V2 and V4 in the presence of competing stimuli, J. Neurophysiol. 70: 909–919.Google Scholar
  95. Mountcastle, V., Andersen, R., and Motter, B. C., 1981, The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex, J. Neurosci. 1: 2118–1232.Google Scholar
  96. Mozer, M. C., 1991, The Perception of Multiple Objects: A Connectionist Approach. MIT Press, Cambridge, MA.Google Scholar
  97. Mozer, M. C., and Sitton, M., 1998, Computational modelling of spatial attention, In: Attention., H. Pashler, ed., Psychology Press, East Sussex, England.Google Scholar
  98. Nakayama, K., and Silverman, G. S., 1986, Serial and parallel processing of visual feature conjunctions, Nature. 320: 264–265.Google Scholar
  99. Nakayama, K., and Mackeben, M., 1989, Sustained and transient components of focal visual attention, Vis. Res. 29: 1631–1647.Google Scholar
  100. Nakayama, K., 1990, The iconic bottleneck and the tenuous link between early visual processing and perception, In: Vision: Coding and Efficiency., C. Blakemore, ed., Cambridge University Press, Cambridge, England.Google Scholar
  101. Nakayama, K., He, Z. J., and Shimojo, S., 1995, Visual surface representation: A critical link between lower-level and higher-level vision, In: Visual Cognition, Vol. 2., S. M. Kosslyn and D. N. Osherson, eds., MIT Press, Cambridge, MA, pp. 1–70.Google Scholar
  102. Neisser, U., 1967, Cognitive Psychology. Appleton-Century-Crofts, New York.Google Scholar
  103. Niebur, E., Koch, C., and Rosin, C., 1993, An oscillation-based model for the neuronal basis of attention, VI’s. Res. 33: 2789–2802.Google Scholar
  104. Nothdurft, H. C., 1993, Saliency effects across dimensions in visual search, Vis. Res. 33: 839–844.Google Scholar
  105. Oken, B. S., Kishiyarna, S., Kaye, J. A., and Howieson, D. B., 1994, Attention deficit in Alzheimer’s disease is not simulated by an anticholinergic/antihistaminergic drug and is distinct from deficits in healthy aging, Neurology. 44: 657–662.Google Scholar
  106. Olshausen, B., Anderson, C., and Van Essen, D., 1994, A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information, J. Neurosci. 13: 4700–4719.Google Scholar
  107. Ooi, T. L., and He, Z. J., 1999, Binocular rivalry and visual awareness: the role of attention, Perception. 28: 551–574.Google Scholar
  108. Parasuraman, R., Greenwood, P. M., Haxby, J. V., and Grady, C. L., 1992, Visuospatial attention in dementia of the Alzheimer type, Brain. 115: 711–733.Google Scholar
  109. Parasuraman, R., and Haxby, J. V., 1993, Attention and brain function in Alzheimer’s disease: a review, Neuropsychologia. 7: 243–273.Google Scholar
  110. Parker, A., and Hawken, M., 1985, Capabilities of monkey cortical cells in spatial-resolution tasks, Opt. Soc. Am. A2: 1101–1114.Google Scholar
  111. Pashler, H., 1987, Detecting conjunctions of color and form: reassessing the serial search hypothesis, Percept. Psychophys. 41: 191–201.Google Scholar
  112. Pelligrino, G. D., and Renzi, E D., 1995, An experimental investigation on the nature of extinction, Neuropsychologia. 33: 153–170.Google Scholar
  113. Peterson, S. E., Robinson, S. I., and Keys, W., 1985, Pulvinar nuclei of the behaving rhesus monkey visual responses and their modulation, J. Neurophysiol. 54: 867–886.Google Scholar
  114. Peterson, S. E., Robinson, D. L., and Morris, J. D., 1987, Contributions of the pulvinar to visual spatial attention, Neuropsychologia. 25: 97–105.Google Scholar
  115. Posner, M. I., and Boies, S. J., 1971, Components of attention, Psycho!. Rev. 78: 391–408.Google Scholar
  116. Posner, M. I., 1980, Orienting of attention, Quart. J. Exp. Psychol. 32: 3–25.Google Scholar
  117. Posner, M. I., 1982, Cumulative development of attentional theory, Am. Psychol. 37: 168–179.Google Scholar
  118. Posner, M. I., Cohen, R. A., and Rafal, R. D., 1982, Neural systems control of spatial orienting, Phil. Trans. Roy. Soc. Lond. B298: 187–198.Google Scholar
  119. Posner, M. I., and Cohen, Y., 1984, Components of visual orienting, In: Attention and Performance, Vol. X., H. Bouma and D. Bouhuis, eds., Lawrence Erlbaum Associates Inc., Hillsdale, NJ.Google Scholar
  120. Posner, M. I., Walker, J. A., Friedrich, F. J., and Rafal, R. D., 1984, Effects of parietal injury on covert orienting, J. Neurosci. 4: 1863–1874.Google Scholar
  121. Posner, M. I., Walker, J. A., Friedrich, F. J., and Rafal, R. D., 1987, How do the parietal lobes direct covert attention?, Neuropsychologia. 25: 135–145.Google Scholar
  122. Posner, M. I., and Peterson, S. E., 1990, The attention system of the human brain, Ann. Rev. Neurosci. 13: 25–42.Google Scholar
  123. Rafal, R. D., Posner, M. I., Walker, J. A., and Friedrich, F. J., 1984, Cognition and the basal ganglia, Brain. 107: 1083–1094.Google Scholar
  124. Rafal, R. D., and Posner, M. I., 1987, Deficits in human visual spatial attention following thalamic lesions, Proc. Natl. Acad. Sci., U.S.A. 84: 7349–7353.Google Scholar
  125. Rafal, R. D., Friedman, J. H., Inhoff, A. W., and Bernstein, E., 1988, Orienting of visual attention in progressive supranuclear palsy, Brain. 111: 267–280.Google Scholar
  126. Rafal, R. D., and Robertson, L. C., 1995, The neurology of visual attention, In: The Cognitive Neurosciences., M. S. Gazzaniga, ed., MIT Press, Cambridge, MA, pp. 625–648.Google Scholar
  127. Robinson, D. L., and Peterson, S. E., 1992, The pulvinar and visual salience, Trends Neurosci. 15: 127–132.Google Scholar
  128. Rummelhart, D. E., Hinton, G. E., and Mc Clelland, J. L., 1986, A general framework for parallel distributed processing, In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. I., J. L. Mc Clelland and D. E. Rummelhart, eds., MIT Press, Cambridge, MA, pp. 45–77.Google Scholar
  129. Sagi, D., and Julesz, B., 1985a, Fast noninertial shifts of attention, Spatial Vis. 1: 141–149. Sagi, D., and Julesz, B., 1985b, “Where” and “what” in vision, Science. 228: 1217–1219.Google Scholar
  130. Sagi, D., and Julesz, B., 1986, Enhanced detection in the aperture of focal attention during simple discrimination tasks, Nature. 321: 693–695.Google Scholar
  131. Salzman, C. D., Britten, K. H., and Newsome, W. T., 1990, Cortical rnicrostimulation influences perceptual judgements of motion direction, Nature. 346: 174–177.Google Scholar
  132. Sandon, P. A., 1990, Stimulating visual attention, Cog. Neurosci. 2: 213–231.Google Scholar
  133. Schneider, W., and Shiffrin, R. M., 1977, Controlled and automatic human information processing: I. Detection, search and attention, Psycho!. Rev. 84: 1–66.Google Scholar
  134. Sereno, A. B., 1992, Programming saccades: the role of attention, In: Eye Movements and Visual Cognition., K. Rayner, ed., Springer-Verlag, New York.Google Scholar
  135. ShiffrOi, R. M., and Gardner, G. T., 1972, Visual processing capacity and attentional control, Journal of Experimental Psychology. 93: 72–83.Google Scholar
  136. Shimojo, S., Miyauchi, S., and Hikosaka, O., 1992, Visual motion sensation yielded by non-visually driven attention, Inv. Ophthalmol. Vis. Sci. Suppl. 32: 1354.Google Scholar
  137. Shiu, L. P., and Pashler, H., 1994, Negligible effect of spatial precuing on identification of single digits, J. Exp. Psycho!.: Human Percept. and Perf 20: 1037–1054.Google Scholar
  138. Shulman, G., Remington, R. W., and McLean, J. P., 1979, Moving attention through visual space, Hum. Percept. Perform. 5: 522–526.Google Scholar
  139. Siddle, D., Stephenson, D., and Spinks, J. A., 1983, Elicitation and habituation of the orienting response, In: Orienting and Habituation: Perspectives in Human Research., D. Siddle, ed., Wiley, New York, pp. 109–182.Google Scholar
  140. Sokolov, 1963, Perception and the Conditioned Reflex. Pergamon Press, Oxford, England. Spear, P. D., 1993, Neural bases of visual deficits during aging, Vis. Res. 33: 2589–2609.Google Scholar
  141. Spillrnann, L., Ransom-Hogg, A., and Oehler, R., 1987, A comparison of perceptive and receptive fields in man and monkey, Hum. Neurobiol. 6: 51–62.Google Scholar
  142. Spitzer, H., Desimone, R., and Moran, J., 1988, Increased attention enhances both behavioural and neuronal performance, Science. 240: 388–340.Google Scholar
  143. Stein, J. F., 1992, The representation of egocentric space in the posterior parietal cortex, Behay. Brain Sci. 15: 691–700.Google Scholar
  144. Steinman, S. B., 1987, Serial and parallel search in pattern vision?, Perception. 16: 389–398. S.einman, S. B., and McKee, S. P., 1988, A low-level approach to the discrimination of natural stimuli, Inv. Ophthalmol. Vis. Sc!. Suppl. 29: 400.Google Scholar
  145. Steinman, S. B., and Levi, D. M., 1992, Topographic mapping of evoked potentials to spatial localization stimuli, Vis. Neurosci. 8: 281–294.Google Scholar
  146. Steinman, S. B., Steinman, B. A., Trick, G. L., and Lehmkuhle, S., 1994, A visual explanation for attentional deficits in the elderly, Optom. Vis. Sci, 71: 743–749.Google Scholar
  147. Steinman, B. A., Steinman, S. B., and Lehmkuhle, S., 1995, Line-motion illusion reveals that visual attention mechanisms have a center-surround organization, Vis. Res. 35: 1859–1869.Google Scholar
  148. Steinman, S. B., and Steinman, B. A., 1996, Long-term excitatory and inhibitory interactions in visual attention, Optom. Vis. Sci. 72.Google Scholar
  149. Steinman, B. A., Steinman, S. B., and Lehmkuhle, S., 1997, Transient visual attention is dominated by the magnocellular stream, Vis. Res, 36: 17–23.Google Scholar
  150. Steinman, B. A., and Steinman, S. B., 1997a, Inversion of the attentional perceptive field by a preceding cue, Inv. Ophthalmol. Vis. Sci. 38: S371.Google Scholar
  151. Steinman, S. B., and Steinman, B. A., 1997b, The line motion illusion: visual attention or apparent motion?, Inv. Ophthalmol. Vis. Sci. 38: S372.Google Scholar
  152. Steinman, S. B., and Steinman, B. A., 1998, Vision and attention I: Current models of visual attention, Optom. Vis. Sci. 75: 146–155.Google Scholar
  153. Steinman, B. A., Steinman, S. B., and Garzia, R. P., 1998, Vision and attention II: Is visual attention the mechanism through which a deficient magnocellular stream causes reading disability?, Optom. Vis. Sci. 75: 674–681.Google Scholar
  154. Tarver, S., and Hallihan, D., 1974, Attention deficits in children with learning disabilities: a review, I Learn. Disabil. 7: 560–569.Google Scholar
  155. Treisman, A. M., 1960, Contextual cues in selective listening, Quart. J. Exp. Psycho, 12: 242–248.Google Scholar
  156. Treisman, A. M., and Gelade, G., 1980, A feature integration theory of attention, Cognitive Psychology. 12: 97–136.Google Scholar
  157. Treisman, A. M., 1985, Preattentive processing, Comput. Vision Graphics Image Proc. 31: 156–177.Google Scholar
  158. Treisman, A. M., and Sato, S., 1990, Conjunction search revisited, I Exp. Psycho!.: Human Percept. and Pet’’’. 16: 459–478.Google Scholar
  159. Treisman, A. M., 1993, The perception of features and objects, In: Attention: Selection, Awareness and Control., A. Baddeley and L. Weiskrantz, eds., Clarendon Press, Oxford, England.Google Scholar
  160. Tsal, Y., 1983, Movement of attention across the visual field, Journal of Experimental Psychology Human Perception. 9: 523–530.Google Scholar
  161. Tse, P., and Cavanagh, P., 1995, Line motion occurs after surface parsing, Inv. Ophthalmol. Vis. Sci. 36: 1919.Google Scholar
  162. Tsotsos, J. K., 1993, An inhibitory beam for attentional selection, In: Spatial Vision in Humans and Robots., L. Harris and M. Jenkins, eds., Cambridge University Press, Cambridge, MA, pp. 313–331.Google Scholar
  163. Tsotsos, J. K., 1995, Toward a computational model of attention, In: Early Vision and Beyond., T. V. Papathomas C. Chubb A. Gores and E. Kowler, eds., MIT Press, Cambridge, MA, pp. 207–218.Google Scholar
  164. Ungerleider, L. G., Galkin, T. W., and Mishkin, M., 1983, Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey, J. Comp. Neural. 217: 137–157Google Scholar
  165. Wolfe, J. M., Cave, K. R., and Franzel, S. L., 1989, Guided search: an alternative to the feature integration model of visual search, I Exp. PsychoL: Human Percept. and Pet’’’. 15: 419–433.Google Scholar
  166. Wolfe, J. M., 1994, Guided search 2.0: a revised model of visual search, Psychonom. Bull. Rev, 1: 202–238.Google Scholar
  167. Wurtz, R. H., Richmond, B. J., and Newsome, W. T., 1984, Modulation of cortical visual processing by attention, perception, and movement, In: Dynamic Aspects of Neocortical Functions., G. M. Edelman W. E. Gall and W. M. Cowan, eds., Wiley, New York.Google Scholar
  168. Yantis, S., and Jonides, J., 1984, Abrupt visual onsets and selective attention: evidence from visual search, I Exp. Psycho!. Human Percept. and Perf. 10: 601–621.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Scott B. Steinman
    • 1
  • Barbara A. Steinman
    • 2
  1. 1.Biomedical Sciences Dept.Southern College of OptometryMemphisUSA
  2. 2.Software In MotionMemphisUSA

Personalised recommendations