Skip to main content

Psychophysics and Modeling of Texture Segregation

  • Chapter
  • 546 Accesses

Abstract

Modern research in visual texture perception can be traced to the pioneering work of Julesz (1962), and Beck (1966). What exactly is visual texture? Even though visual texture is not easy to define, a good “stratified” definition was proposed by Gorea: “Visual texture is a 2D [two-dimensional] visual stimulus characterized by a visible grain. Visual grain consists of local modulations along dimensions such as luminance, color, and shape, which may or may not be discriminable. Two textures are visually different if they do not share the same grain and/or if they do not share, in the statistical sense, the same grain distribution across space.” (Gorea 1995, pp. 55–56). Figure 12.1 shows an example of texture-based segregation. In Fig. 12.1a, the central region consisting of X’s shows a marked segregation from the peripheral region composed of T’s. This is an example of pre-attentive or “pop-out” texture segmentation. However, in Fig. 12.1b, the central region comprising of L’s does not segregate preattentively from the peripheral regions composed of T’s.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E. H., and Bergen, J., 1985, Spatiotemporal energy models for the perception of motion, Journal of the Optical Society of America, 2A: 284–299.

    Google Scholar 

  • Ahissar, M., and Hochstein, S., 1991, Learning is both stimulus and task specific, Investigative Ophthalmology and Visual Science Supplement, 32: 715

    Google Scholar 

  • Bach, M., and Meigen, T., 1992, Electrophysiological correlates of texture segregation in the human visual evoked potential, Vision Research, 32: 417–424.

    Google Scholar 

  • Bach, M., and Meigen, T., 1997, Similar electrophysiological correlates of texture segregation induced by luminance, orientation, motion, and stereo, Vision Research, 37: 1409–1414.

    Google Scholar 

  • Beck, J., 1966, Perceptual grouping produced by changes in orientation and shape, Science, 154: 538–540.

    Google Scholar 

  • Beck, J., 1967, Perceptual grouping produced by line figures, Perception and Psychophysics, 2: 491–495.

    Google Scholar 

  • Beck, J., 1982, Textural segmentation, in: Organization and Representation in Perception, Hillsdale, NJ.

    Google Scholar 

  • Beck, J., Graham, N., and Sutter, A., 1991, Lightness differences and the perceived segregation of regions and populations, Perception and Psychophysics, 49: 257–269

    Google Scholar 

  • Beck, J., Prazdny, K., and Rosenfeld, A., 1983, A theory of textural segmentation, in: Human and Machine Vision, J. Beck, B. Hope, and A. Rosenfeld, ed., Academic Press, New York.

    Google Scholar 

  • Beck, J., Sutter, A., and Ivry, R., 1987, Spatial frequency channels and perceptual grouping in texture segregation, Computer Vision, Graphics and Image Processing, 37: 299–325

    Google Scholar 

  • Bergen, J. R., 1991, Theories of visual texture perception, in: Vision and Visual Dysfunction, D. Regan, ed., Vol 10, Macmillan, New York.

    Google Scholar 

  • Bergen, J. R., and Adelson, E.H., 1986, Visual texture segmentation based on energy measures, Journal of the Optical Society of America, 3A: 98.

    Google Scholar 

  • Bergen, J. R., and Adelson, E.H., 1988, Early vision and texture perception, Nature, 333: 363–364.

    Google Scholar 

  • Bergen, J.R., and Julesz, B., 1983, Parallel versus serial processing in rapid pattern discrimination, Nature, 303: 696–698.

    Google Scholar 

  • Bergen, J.R., and Landy, M. S., 1991, Computational modeling of visual texture segregation, in: Computational Models of Visual Perception, M.S. Landy and J.A Movshon, editors, MIT Press, Cambridge, MA.

    Google Scholar 

  • Bonds, A. B., 1989, Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex, Visual Neuroscience, 2: 41–55.

    Google Scholar 

  • Bovik, A. C., Clark, M., and Geisler, W. S., 1987, Computational texture analysis using localized spatial filtering, in: Proceedings of the Workshop on Computer Vision, IEEE Computer Society Press, Miami Beach, pp 201–206.

    Google Scholar 

  • Bravo, M., and Nakayama, K., 1994, The role of attention in different visual-search tasks, Perception and Psychophysics, 51: 465–472.

    Google Scholar 

  • Buckley, D., and Fisby, J. P., 1993, Interaction of stereo, texture and outline cues in the shape perception of three-dimensional ridges, Vision Research, 33: 919–933.

    Google Scholar 

  • Caelli, T., 1982, On discriminating visual textures and images, Perception and Psychophysics, 31: 149–159.

    Google Scholar 

  • Caelli, T., 1985, Three processing characteristics of visual texture segmentation, Spatial Vision, 1: 19–30.

    Google Scholar 

  • Caelli, T., and Julesz, B., 1978, On perceptual analyzers of visual texture discrimination, Biological Cybernetics, 28: 167–175.

    Google Scholar 

  • Caelli, T., and Julesz, B., 1979, Psychophysical evidence for global feature processing in visual texture discrimination, Journal of the Optical Society of America, 69: 675–677

    Google Scholar 

  • Callahan, T. C., 1989, Interference and dominance in texture segregation: Hue, geometric form, and line orientation, Perception and Psychophysics, 46: 299–311.

    Google Scholar 

  • Callahan, T. C., Lasaga, M. I., and Garner, W. R, 1986, Visual texture segregation based on orientation and hue, Perception and Psychophysics, 39: 32–38.

    Google Scholar 

  • Cannon, M. W., and Fullenkamp, S. C., 1991, Spatial interactions in apparent contrast: Inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Research, 31: 1985–1998.

    Google Scholar 

  • Caputo, G., 1996, The role of the background: Texture segregation and figure-ground Segmentation, Vision Research, 36: 2815–2826.

    Google Scholar 

  • Caputo, G., 1998, Texture brightness filling-in, Vision Research, 38: 841–851

    Google Scholar 

  • Chubb, C., and Sperling, G., 1988, Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception, Journal of the Optical Society of America, 5A: 1986–2006.

    MathSciNet  Google Scholar 

  • Chubb, C., and Sperling, G., 1989, Second-order motion perception: Space/time separable mechanisms, in: Proceedings of the Workshop on Visual Motion, pp. 126–138.

    Google Scholar 

  • Daugman, J. G., 1987, Image analysis and compact coding by oriented 2-D Gabor primitives, S.P.I.E. Proceedings, 758: 19–30.

    Google Scholar 

  • Daugman, J. G., 1988, Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression, IEEE Transactions on Acoustics, Speech and Signal Processing, 36: 1169–1179.

    MATH  Google Scholar 

  • DeYoe, E. A., and VanEssen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends in Neuroscience, 11: 219–226.

    Google Scholar 

  • Durgin, F. H., and Huk, A. C., 1997, Texture density after-effects in the perception of natural and artificial textures, Vision Research, 37: 3273–3282.

    Google Scholar 

  • Enn, J., 1986, Seeing textons in context, Perception and Psychophysics, 39: 143–147

    Google Scholar 

  • Fogel, I., and Sagi, D., 1989, Gabor filters as texture discriminator, Biological Cybernetics, 61: 103–113.

    Google Scholar 

  • Gallant, J. L., van Essen, D. C., and Nothdurft, H. C., 1995, Two-dimensional and three-dimensional texture processing in visual cortex of the macaque monkey, in: Early Vision and Beyond, T.V. Papathomas, C. Chubb, A. Gorea, and E. Kowler, editors, pp 89–98, MIT Press, Cambridge, MA.

    Google Scholar 

  • Garner, W. R., and Feldoldy, G. L., 1970, Integrality of stimulus dimensions in various types of information processing, Cognitive Psychology, 1: 225–241.

    Google Scholar 

  • Gibson, J., 1950, The perception of the visual world, Houghton Mifflin, Boston, MA. Gorea, A., 1995, Visual texture, in: Early Vision and Beyond, T.V. Papathomas, C. Chubb, A. Gorea, and E. Kowler, editors, pp. 55–57, MIT Press, Cambridge, MA.

    Google Scholar 

  • Gorge, A., and Papathomas, T. V., 1999, Luminance, color, and orientation: Local versus global contrasts in texture segregation, Journal of the Optical Society of America, 16A (3): 728–741.

    Google Scholar 

  • Gorea, A., and Papathomas, T. V., 1989, The role of color and orientation matching in texture discrimination, Presented at Annual OSA Meeting, Technical Digest Series, 18: 161.

    Google Scholar 

  • Gorea, A., and Papathomas, T. V., 1991, Texture segregation by chromatic and achromatic visual pathways: An analogy with motion processing, Journal of the Optical Society of America, 8A (2): 386–393.

    Google Scholar 

  • Gorea, A., and Papathomas, T. V., 1991b, Extending a class of motion stimuli to study multi-attribute texture perception, Behavioral Research Methods, Instruments and Computers, 23 (1): 5–8.

    Google Scholar 

  • Gores, A., and Papathomas, T. V., 1993, Double-opponency as a generalized concept in texture segregation illustrated with color, luminance and orientation defined stimuli, Journal of the Optical Society of America A, 10: 1450–1462.

    Google Scholar 

  • Gouras, P., and Kruger, J., 1979, Responses of cells in foveal visual cortex of the monkey to pure color contrast, Journal of Neurophysiology, 42: 850–860.

    Google Scholar 

  • Graham, N., 1991, Complex channels, early local nonlinearities, and normalization in texture segregation, in: Computational Models of Visual Perception, M.S. Landy and J.A Movshon, editors, MIT Press, Cambridge, MA.

    Google Scholar 

  • Graham, N., Beck, J., and Sutter, A., 1992, Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast, Vision Research, 32: 719–743.

    Google Scholar 

  • Grossberg, S., and Mingolla, E., 1985, Neural dynamics of perceptual grouping: Textures, boundaries and emergent segmentations, Perception and Psychophysics, 38: 141–171

    Google Scholar 

  • Grossberg, S., and Mingolla, E., 1986, Computer simulation of neural networks for perceptual psychology. Behavior Research Methods, Instruments and Computers, 18: 601–607.

    Google Scholar 

  • Gurney, R., and Browse, R., 1987, Micropattem properties and presentation conditions influencing visual texture discrimination, Perception and Psychophysics, 41: 239–252

    Google Scholar 

  • Julesz, B., 1962, Visual texture discrimination, IRE Transactions on Information Theory, 8: 84–92.

    Google Scholar 

  • Julesz, B., 1965, Texture and visual perception, Scientific American, 212: 38–48.

    Google Scholar 

  • Julesz, B., 1981, Textons, the elements of texture perception and their interactions, Nature, 290: 91–97.

    Google Scholar 

  • Julesz, B., 1981, A theory of preattentive texture discrimination based on first-order statistics of textons, Biological Cybernetics, 41: 131–138.

    MathSciNet  MATH  Google Scholar 

  • Julesz, B., 1995, Dialogues on Perception, MIT Press, Cambridge, MA.

    Google Scholar 

  • Julesz, B., and Bergen, J. R., 1983, Textons, the fundamental elements in preattentive vision and perception of textures, The Bell System Technical Journal, 62: 1619–1645

    Google Scholar 

  • Julesz, B., Gilbert, E.N., and Victor, J. D., 1978, Visual discrimination of textures with identical third-order statistics, Biological Cybernetics, 31: 137–140.

    Google Scholar 

  • Kashi, R. S., Papathomas, T. V., and Gorea, A. G., 1994, A perceptually based computational model for texture segregation of color images, Proceedings of the IEEE Workshop on Visual Signal Processing and Communications. IEEE Press.

    Google Scholar 

  • Kashi, R. S., Papathomas, T. V., and Gorea, A. G., 1997, Grouping in sparse random-dot patterns: Linear and non-linear mechanisms, Proceedings of the SPIE conference on human vision and electronic imaging, 3016: 420–429.

    Google Scholar 

  • Kashi, R. S., Papathomas, T. V., Gorea, A. G., and Julesz, B., 1996, Similarities between texture grouping and motion perception: The role of color, luminance, and orientation. International Journal of Imaging Systems and Technology, 7: 85–91.

    Google Scholar 

  • Knierim, J. J., and van Essen, D. C., 1992, Neuronal responses to static texture patterns in area VI of the alert macaque monkey, Journal of Neurophysiology, 67: 4: 961–980

    Google Scholar 

  • Knill, D. C., 1998, Discrimination of planar surface from texture: human and ideal observers compared, Vision Research, 38: 1683–1711.

    Google Scholar 

  • Knill, D. C., 1998b, Surface orientation from texture: ideal observers, generic observers, and the information content of texture cues, Vision Research, 38: 1655–1682.

    Google Scholar 

  • Krose, B. J. A., 1987, Local structure analyzers as determinants of preattentive pattern discrimination, Biological Cybernetics, 55: 289–298.

    Google Scholar 

  • Kwan, L., and Regan, D., 1998, Orientation-tuned spatial filters for texture-defined form, Vision Research, 38: 3849–3855.

    Google Scholar 

  • Lamme, V. A., van Dijk, B. W., and Spekreijse, H., 1992, Texture segregation is processed by primary visual cortex in man and monkey: Evidence from VEP experiments, Vision Research, 32: 797–807.

    Google Scholar 

  • Landy, M. S., and Bergen, J. R, 1991, Texture segregation and orientation gradient, Vision Research, 31: 679–691.

    Google Scholar 

  • Li, A., and Lennie, P., 1997, Mechanisms underlying segmentation of colored textures, Vision Research, 37: 83–97.

    Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1988, Segregation of form, color, movement and depth: Anatomy, physiology and perception, Science, 240: 740–749.

    Google Scholar 

  • Malik, J., and Perona, P., 1989, A computational model of human texture perception, Investigative Ophthalmology and Visual Science Supplement, 30: 161

    Google Scholar 

  • Malik, J., and Perona, P., 1990, Preattentive texture discrimination with early vision mechanisms, Journal of the Optical Society ofAmerica, 7A: 923–932.

    Google Scholar 

  • Marr, D., and Poggio, T., 1976, Cooperative computation of stereo disparity. Science, 194: 283–287.

    Google Scholar 

  • Marr, D., and Poggio, T., 1979, A computational theory of human stereo vision, Proceedings of the Royal Society of London B, 204: 301–328.

    Google Scholar 

  • Michael, C.R., 1979, Color-sensitive hypercomplex cells in monkey striate cortex, Journal of Neurophysiology, 42: 726–744.

    Google Scholar 

  • Milcami, A., Newsome, W.T., and Wurtz, R.H., 1986, Motion selectivity in macaque visual cortex: Spatio-temporal range nf directional interactions in MT and VI, Journal of Physiology, 55: 1328–1339.

    Google Scholar 

  • Nakayama, K., and Silverman, G. H., 1986, Serial and parallel processing of visual feature conjunctions, Nature, 320: 264–265.

    Google Scholar 

  • Narn, J. H., and Chubb, C., 1988, Perceived texture contrast is determined by a negative half-wave rectifying mechanism, Investigative Ophthalmology and Visual Science Supplement, 39: 649.

    Google Scholar 

  • Northdurft, H. C., and Parlitz, D., 1993, Absence of express saccades to texture or motion defined targets, Vision Research, 33: 1367–1383.

    Google Scholar 

  • Northdurft, H. C., 1985, Sensitivity for structure gradient in texture discrimination tasks, Vision Research, 25: 1957–1988.

    Google Scholar 

  • Northdurft, H. C., 1990, Texture discrimination by cells in the cat lateral geniculate nucleus, Experimental Brain Research, 82: 48–56.

    Google Scholar 

  • Ohzawa, I., DeAngelis, G. C., and Freeman, R. D., 1990, Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors, Science, 249: 1037–1041

    Google Scholar 

  • Papathomas, T. V., Gorea, A., Feher, A., and Conway, T. E., 1999, Attention-based texture segregation, Perception and Psychophysics.

    Google Scholar 

  • Papathomas, T. V., Kashi, R. S., and Gorea, A., 1997, A human vision based computational model for chromatic texture segregation, IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 27 (3): 428–440.

    Google Scholar 

  • Pessoa, L., Beck, J., and Mingolla, E., 1996, Perceived texture segregation in chromatic element-arrangement pattern: High intensity interference, Vision Research, 36: 1745–1760.

    Google Scholar 

  • Poggio, G. F., Motter, B. C., Squatrito, S., and Trotter, Y., 1985, Responses of neurons in visual cortex VI and V2 of the alert macaque to dynamic random-dot stereograms, Vision Research, 25: 397–406.

    Google Scholar 

  • Polat, U., and Sagi, D., 1992, Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking, Investigative Ophthalmology and Visual Science Supplement, 33: 1345.

    Google Scholar 

  • Rao, R. A., and Lohse, G. L., 1966, Towards a texture naming system: Identifying relevant dimensions of texture, Vision Research, 36: 1649–1669.

    Google Scholar 

  • Reichardt, W., 1961, Autocorrelation, a principle for the evaluation of sensory information by the central nervous system, in: Sensory Communication, W.A. Rosenblith, editor Wiley, New York.

    Google Scholar 

  • Rosenholtz, R., and Malik, J., 1997, Surface orientation from texture: isotropy or homogeneity (or both)? Vision Research, 37: 2283–2293.

    Google Scholar 

  • Rubenstein, B. S., and Sagi, D., 1990, Spatial variability as a limiting factor in texture-discrimination tasks: Implications and performance, Journal of the Optical Society of America, 7A: 1632–1643.

    Google Scholar 

  • Sagi, D., 1995, The psychophysics of texture segmentation, in: Early Vision and Beyond, T.V. Papathomas, C. Chubb, A. Gorea, and E. Kowler, editors, pp. 89–98, MIT Press, Cambridge, MA.

    Google Scholar 

  • Sagi, D., and Julesz, B., 1987, Short-range limitation on detection of feature differences, Spatial Vision, 2: 29–49.

    Google Scholar 

  • Shatz, B. R., 1977, The computation of immediate texture discrimination, MIT AI Memo, page 426.

    Google Scholar 

  • Sperling, G., 1989, Three stages and two systems of visual processing, Spatial Vision, 4: 183–207.

    Google Scholar 

  • Sutter, A., Beck, J., and Graham, N., 1989, Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model, Perception and Psychophysics, 46: 312–332.

    Google Scholar 

  • Treisman, A., and Gelade, G., 1980, A feature integration theory of attention, Cognitive Psychology, 12: 97–136.

    Google Scholar 

  • Treisman, A., and Gormican, S., 1988, Feature analysis in early vision: Evidence from search asymmetries, Psychological Reviews, 95: 15–48.

    Google Scholar 

  • Troje, N. F., and Bulthoff, H. H., 1996, Face recognition under varying poses: The role of texture and shape, Vision Research, 36: 1761–1771.

    Google Scholar 

  • Turner, M. R., 1986, Texture discrimination by Gabor functions, Biological Cybernetics, 55: 71–82.

    Google Scholar 

  • van Essen, E. A., DeYoe, E. A., Olavarria, J. F., Krierim, J. J., Fox, J. M., Sagi, D., and Julesz, B., 1990, Neural responses to static and moving texture patterns in visual cortex of the macaque monkey, in: Neural Mechanisms of Visual Perception, D.M.K. Lam and C.D. Gilbert, editors, pp. 137–154. Porfolio Publishing, Woodlands TX.

    Google Scholar 

  • Van Santen, J. P. H., and Sperling, G., 1985, Elaborated Reichardt detectors, Journal of the Optical Society of America, 2A: 300–321.

    Google Scholar 

  • Victor, J. D., and Conte, M. M., 1996, The role of high-order phase correlations in texture processing, Vision Research, 36: 1615–1632.

    Google Scholar 

  • Victor, J. D., Conte, M. M., Purpura, K., and Katz, E., 1995, Isodipole textures: a window on cortical mechanisms of form processing, in: Early Vision and Beyond, T.V. Papathomas, C. Chubb, A. Gorea, and E. Kowler, editors, pp. 89–98, MIT Press, Cambridge, MA.

    Google Scholar 

  • Voorhees, H., and Poggio, T., 1988, Computing texture boundaries from images, Nature, 333: 364–367.

    Google Scholar 

  • Watson, A. B., and Ahtunada, A. J., 1985, Model of human visual-motion sensing, Journal of the Optical Society of America, 2A: 322–342.

    Google Scholar 

  • Watt, R. J., 1995, Some speculations on the role of texture processing in visual Perception, in: Early Vision and Beyond, T.V. Papathomas, C. Chubb, A. Gores, and E. Kowler, editors, pp. 89–98, MIT Press, Cambridge, MA.

    Google Scholar 

  • Wilson, H., and Mast, R., 1993, Illusory motion of texture boundaries, Vision Research, 33: 1437–1446.

    Google Scholar 

  • Wolfe, J. M., 1992, Effortless texture segmentation and ‘parallel’ visual search are not the same thing, Vision Research, 32: 757–763.

    Google Scholar 

  • Zeki, S. M., 1973, Colour coding in rhesus monkey prestriate cortex, Brain Research, 53: 422–427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kashi, R., Papathomas, T.V., Julesz, B. (2002). Psychophysics and Modeling of Texture Segregation. In: Hung, G.K., Ciuffreda, K.J. (eds) Models of the Visual System. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5865-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5865-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3377-5

  • Online ISBN: 978-1-4757-5865-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics