Models of Saccade-Vergence Interactions

  • George K. Hung
  • Kenneth J. Ciuffreda
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


Eye fixations in daily life are controlled by two types of eye movements. Saccades rotate the two eyes in the same direction (i.e., conjugately; Fig. 11.1A), such as during reading and scanning of a scene, whereas vergence movements rotate the two eyes in opposite-directions (i.e., disjunctively; Fig. 11.1B), such as during tracking of objects moving in depth. Together, they provide control of binocular fixation in three-dimensional space (Ciuffreda and Tannen, 1995).


Transient Divergence Fixation Disparity Vergence Movement Ramp Stimulus Nucleus Reticularis Tegmenti Pontis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, L., Dell’Osso, L, Daroff, R.B. and Parker, L., 1979, Saccades in extremes of lateral gaze, Invest. Ophthal. Vis. Sci. 18: 324–327.Google Scholar
  2. Alpern, M., 1953, Metacontrast, J. Opt. Soc. Am. 29: 631–646.Google Scholar
  3. Alpem, M. and Ellen, P., 1956, A quantitative analysis of the horizontal movements of the eyes in the experiment of Johannes Mueller. I. Methods and results, Am. J. Ophihalmol. 42: 289–303.Google Scholar
  4. Aslin, R. N. and Shea, S. L., 1987, The amplitude and angle of saccades to double-step target displacements, Vis. Res. 27: 1925–1942.CrossRefGoogle Scholar
  5. Averbauch-Heller, L., Lewis, R. F., and Zee, D. S., 1999, Disconjugate adaptation ofGoogle Scholar
  6. saccades: contribution of binocular and monocular mechanisms. Vis. Res. 39: 341–352.Google Scholar
  7. Bahill, A. T. and Stark, L., 1979, The trajectory of saccadic eye movements, Sci. Am. 240: 108–117.CrossRefGoogle Scholar
  8. Bahill, A. T., 1981, Bioengineering: Biomedical, Medical, and Clinical Engineering, Prentice-Hall, Englewood Cliffs, NJ, pg. 146.Google Scholar
  9. Becker, W. and Jurgens, R., 1979, An analysis of the saccadic system by means of double step stimuli, Vis. Res. 19: 967–982.CrossRefGoogle Scholar
  10. Bucci, M. P., Kapoula, Z., and Eggert, T, 1999, Saccade amplitude disconjugacy induced by aniseikonia: role of monocular depth cues, Vis. Res. 39: 3109–3122.CrossRefGoogle Scholar
  11. Campbell F. W., and Wurtz, R. H., 1978, Saccadic omission: Why we do not see a grey-out during a saccadic eye movement, Vis. Res. 18: 1297–1303.Google Scholar
  12. Chaturvedi, V. and van Gisbergen, J. A. M., 1999, Perturbation of combined saccade-vergence movements by microstimulation in monkey superior colliculus, J. Neurophysiol. 81: 2279–2296.Google Scholar
  13. Ciuffreda K.J. and Stark, L., 1975, Descartes’ law of reciprocal innervation, Amer. J. Optom. Physiolo. Opt. 52: 662–673.Google Scholar
  14. Ciuffreda, K.J. and Tannen, B., 1995, Eye Movement Basics for the Clinician, Mosby, St. Louis, MO, pp. 36–71, 127–160Google Scholar
  15. Clark, M. R. and Crane, H. D., 1978, Dynamic interactions in binocular vision, in: Eye Movements and the Higher Psychological Functions, J. W. Senders, D. F. Fisher, and R. A. Monty, eds., Erlbaum, Hillsdale, NJ, pp. 77–88.Google Scholar
  16. Collewijn, H., Erkelens, C. J., and Steinman, R. M., 1988, Binocular co-ordination of human saccadic eye movements, J. Physiol. 404: 157–182.Google Scholar
  17. Collewijn, H., Erkelens, C. J., and Steinman, R. M., 1995, Voluntary binocular gaze-shifts in the plane of regard: dynamics of version and vergence, Vis. Res. 35: 3335–3358.CrossRefGoogle Scholar
  18. Collewijn, H., Erkelens, C. J., and Steinman, R. M., 1997, Trajectories of the human binocular fixation point during conjugate and non-conjugate gaze-shifts, Vis. Res. 37: 1049–1069.CrossRefGoogle Scholar
  19. Eggert, T. and Kapoula, Z., 1995, Position dependency of rapidly induced saccade disconjugacy, Vis. Res. 35: 3493–3503.CrossRefGoogle Scholar
  20. Enright, J. T., 1984, Changes in vergence mediated by saccades, J. Physiol. 350: 9–31.Google Scholar
  21. Enright, J. T., 1986, Facilitation of vergence changes by saccades: influences of misfocused images and of disparity stimuli in man, J. Physiol. 371: 69–87.Google Scholar
  22. Enright, J. T., 1992, The remarkable saccades of asymmetrical vergence, Vis. Res. 32: 2261–2276.CrossRefGoogle Scholar
  23. Erkelens, C. J., Steinman, R. M., and Collewijn, H., 1989, Ocular vergence under natural conditions: II: Gaze shifts between real targets differing in distance and direction, Proc. R. Soc. London.(B). 236: 444–465.Google Scholar
  24. Findlay, J. M., and Harris, L. R., 1993, Horizontal saccades to dichoptically presented targets of differing disparities, Vis. Res., 33: 1001–1010.CrossRefGoogle Scholar
  25. Gamlin, P. D. R. and Clarke, R. J., 1995, Single-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation, J. Neurophysiol. 73: 2135–2119.Google Scholar
  26. Gamlin, P. D. R. and Mays, L. E., 1992, Dynamic properties of medial rectus motoneurons during vergence eye movements, J. Neurophysiol. 67: 64–74.Google Scholar
  27. Glassman, R. B., 1999, A working memory “theory of relativity”: Elasticity in temporal, spatial, and modality dimensions conserves item capacity in radial maze, verbal tasks, and other cognition, Brain Res. Bull. 48: 475–489.CrossRefGoogle Scholar
  28. Hering, E.. 1977 (originally 1868), The Theory of Binocular Vision, B. Bridgman and L. Stark L, eds. trans., Plenum Press, New York.Google Scholar
  29. Hou, R. L. and Fender, D. H., 1979, Processing of direction and magnitude by the saccadic eye movement system, Vis. Res. 19: 1421–1426Google Scholar
  30. Hung, G. K., 1998a, Dynamic model of saccade-vergence interactions, Med. Sci. Res. 26: 9–14.Google Scholar
  31. Hung, G. K., 1998b, Saccade-vergence trajectories under free-and instrument-space environments, Curr. Eye Res. 17: 159–164.CrossRefGoogle Scholar
  32. Hung, G. K. and Ciuffreda, K. J., 1996, Schematic model of saccade-vergence interactions, Med. Sci. Res. 24: 813–816.Google Scholar
  33. Hung, G. K., Ciuffreda, K. J., Semmlow, J. L., and Horng, J.- L., 1994, Vergence eye movements under natural viewing conditions, Invest. Ophthal. Vis. Sci. 35: 3486–3492.Google Scholar
  34. Hung, G. K., Li, S., Semmlow, J. L., and Ciuffreda K. J., 1990, Suppression of sensitivity to change in target disparity during vergence eye movements, Exp. Neurol. 110: 291–297.CrossRefGoogle Scholar
  35. Hung, G. K., Semmlow, J. L., and Ciuffreda, K. J., 1983, Identification of accommodative vergence contribution to the near response using response variance,. Invest. Ophthal. Sci., 24: 772–777.Google Scholar
  36. Hung, G. K., Semmlow, J. L., and Ciuffreda, K. J., 1984, The near response: modeling, instrumentation,and clinical applications, IEEE Trans. Biomed. Engin. 31: 910–919.CrossRefGoogle Scholar
  37. Hung, G. K., Semmlow, J. L., and Ciuffreda, K. J., 1986, A dual-mode dynamic model of the vergence eye movement system, IEEE Trans. Biomed. Engin. 33: 1021–1028.CrossRefGoogle Scholar
  38. Hung, G. K., Wang, T. J., Ciuffreda, K. J., and Semmlow, J. L., 1989, Suppression of sensitivity to surround displacement during vergence eye movements. Exp. Neurol. 105: 300–305.CrossRefGoogle Scholar
  39. Hung, G. K., Thu, H. M. and Ciuffreda, K. J., 1997, Convergence and divergence exhibit different response characteristics to symmetric stimuli, Vis. Res. 37: 1197–1205.CrossRefGoogle Scholar
  40. Judge, S. J. and Cumming, B. G., 1986, Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation, J. Neurophysiol. 55: 915–930.Google Scholar
  41. Jurgens, R., Becker, W., and Kornhuber, H. H., 1981, Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback, Biol. Cyber. 39: 87–96.CrossRefGoogle Scholar
  42. Kapoula, Z., Eggert, T., and Bucci, M. P., 1995, Immediate saccade amplitude disconjugacy induced by unequal images, Vis. Res. 35: 3505–3516.CrossRefGoogle Scholar
  43. Keller, E. L., 1977, Control of saccadic eye movements by midline brain stem neurons, in: Control of Gaze by Brain Stem Neurons, Baker R and Berthoz A, eds., Elsevier-North Holland, Amsterdam, pp. 327–336.Google Scholar
  44. Keller, E. L. and Robinson, D. A., 1972, Abducens unit behavior in the monkey during vergence movements, Vis. Res. 12: 369–382.CrossRefGoogle Scholar
  45. Kenyon, R. V. and Ciuffreda, K. J., 1978, Unequal saccades during vergence, Am. J Optom. Physiol. Opt. 57: 586–594.CrossRefGoogle Scholar
  46. Kenyon, R. V., Ciuffreda, K. J., and Stark, L. 1980, An unexpected role for normal accommodative vergence in strabismus and amblyopia, Am. J. Optom. Physiol. Opt. 57: 655–577.Google Scholar
  47. King, W. M. and Fuchs, A. F., 1977, Neuronal activity in the mesencephalon related to vertical eye movements, in: Control of Gaze by Brain Stem Neurons, R. Baker and A. Berthoz, eds., Elsevier-North Holland, Amsterdam, pp. 319–326.Google Scholar
  48. Krishnan, V. V. and Stark, L., 1977. A heuristic model for the human vergence eye movement system. IEEE Trans. Biomed. Engin. 24: 44–48.CrossRefGoogle Scholar
  49. Krommenhoek, K. P. and van Gisbergen, J. A. M., 1994, Evidence for nonretinal feedback in combined version-vergence eye movements, Exp. Brain Res. 102: 95–109.CrossRefGoogle Scholar
  50. Leigh, R. J. and Zee, D. S., 1991, The Neurology of Eye Movements, 2nd Ed., F.A. DavisGoogle Scholar
  51. Company, Philadelphia, PA. Manning, K. A. and Riggs, L. A., 1984, Vergence eye movements and visual suppression, Vis. Res. 24: 521–526.Google Scholar
  52. Maxwell, J. S. and King, W. M., 1992, Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys, J. Neurophysiol. 68: 1248–1260.Google Scholar
  53. Mays, L. E., 1983, Neurophysiological correlates of vergence eye movements, in: C. M. Schor and K. J. Ciuffreda, eds. Vergence Eye Movements: Basic and Clinical Aspects. Butterworths, Boston, pp. 649–670.Google Scholar
  54. Mays, L. E., 1984, Neural conrol of vergence eye movements: convergence and divergence neurons in the midbrain, J. Neurophysiol. 51: 1091–1108.Google Scholar
  55. Mays, L. E. and Gamlin, P. D. R., 1995,. A neural mechanism subserving saccade-vergence interactions, in: J. M. Findlay et al, eds., Eye Movement Research, Elsevier Science, Oxford, pp. 215–223.Google Scholar
  56. Mays, L. E. and Porter, J. D., 1984, Neural control of vergence eye movements: activity of abducens and oculomotor neurons, J. Neurophysiol. 52: 743–761.Google Scholar
  57. Mays, L. E., Porter, J. D., Gamlin, P. D. R, and Tello, C. A., 1986, Neural control of vergence eye movements: neurons encoding vergence velocity, J. Neurophysiol. 56: 1007–1021.Google Scholar
  58. Miller, J. M., Ono, H., and Steinbach, M. J., 1980, Additivity of fusional vergence and pursuit eye movements, Vis. Res. 20: 43–47.CrossRefGoogle Scholar
  59. Ono, H. 1983, The combination of version and vergence, in: Vergence Eye Movements: Basic and Clinical Aspects, C. Schor and K. J. Ciuffreda, eds., Butterworths, Boston, pp. 373–400.Google Scholar
  60. Ono, H. and Nakamizo, S., 1977, Saccadic eye movements during changes in fixation to stimuli at different distances, Vis. Res. 17: 233–238.CrossRefGoogle Scholar
  61. Panum, P. L. 1858. Physiologische Untersuchungen über das Sehen mit zwei Augen. Schwersche Buchandlung, Kiel, Germany.Google Scholar
  62. Rashbass, C. and Westheimer, G., 1961a, The relationship between saccadic and smooth tracking eye movements, J. Physiol. 159: 326–338.Google Scholar
  63. Rashbass, C. and Westheimer, G., 1961b, Disjunctive eye movements, I Physiol. 159: 339–360.Google Scholar
  64. Riggs, L. A. and Niehls, E. W., 1960, Eye movements recorded during convergence and divergence, J. Opt. Soc Am. 50: 913–920.CrossRefGoogle Scholar
  65. Robinson, D. A., 1973, Models of the saccadic eye movement control system, Kybernetic. 14: 71–83.CrossRefGoogle Scholar
  66. Schor, C. M., 1979, The influence of rapid prism adaptation upon fixation disparity, Vis. Res. 19: 757–765.CrossRefGoogle Scholar
  67. Schor C. M., Robertson K. M., and Wesson, M., 1986, Disparity vergence dynamics and fixation disparity, Am. I Optom. Physiol. Opt. 63: 611–616.CrossRefGoogle Scholar
  68. Scudder, C. A., 1988, A new local feedback model of the saccadic burst generator, J. Neurophysiol. 59: 1455–1475.Google Scholar
  69. Semmlow, J.L., Hung, G. K., and Ciuffreda, K. J., 1986, Quantitative assessment of disparity vergence components, Invest. Ophthal. Vis. Sci. 27: 558–564.Google Scholar
  70. Semmlow, J. L., Hung, G. K., Homg, J. L., and Ciuffreda, K. J. 1993, The initial controlGoogle Scholar
  71. component in disparity vergence eye movements, Ophthal. Physiol. Optics,13: 48–55.Google Scholar
  72. Semmlow, J. L., Hung, G. K., Homg, J. L., and Ciuffreda, K. J. 1994, Disparity vergence eye movements exhibit preprogrammed motor control, Vis. Res. 34: 1335–1343.CrossRefGoogle Scholar
  73. Semmlow, J. L. and Venkiteswaren, N., 1976, Dynamic accommodative vergence in binocular vision, Vis. Res. 16: 403–411.CrossRefGoogle Scholar
  74. Smith, K. U., Schmidt, J., and Putz V., 1970, Binocular coordination: feedback synchronization of eye movements for space perception, Am. J Optom. Arch. Am. Acad. Optom. 47: 679–689.Google Scholar
  75. Sparks, D. L., 1986, Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus, Physiol. Rev. 66: 118–171.Google Scholar
  76. Stark, L., 1968, Neurological Control Systems: Studies in Bioengineering. Plenum Press, New York.Google Scholar
  77. Steinman, R. M. and Collewijn, H., 1981, Binocular retinal image motion during active head rotation, Vis. Res. 20: 415–429.CrossRefGoogle Scholar
  78. Tamler, E., Jampolsky, A., and Marg, E., 1958, An electromyographic study of asymmetric convergence, Am. J. Ophthalmol. 46: 174–182.Google Scholar
  79. van der Steen, J. and Bruno, P., 1995, Unequal amplitude saccades produced by aniseikonic patterns: effect of viewing distance, Vis. Res. 35: 3459–3471.CrossRefGoogle Scholar
  80. van Gisbergen, J. A., Robinson, D. A., and Gielen, S., 1981, A quantitative analysis of generation of saccadic eye movements by burst neurons, J. Neurophysiol. 45: 417–442.Google Scholar
  81. Volkmann, F. C., Riggs, L. A., Ellicott, A. G., and Moore, R. K., 1982, Measurements of visual suppression during opening and closing, and blinking of the eyes, Vis. Res. 22: 991–996.CrossRefGoogle Scholar
  82. Westheimer, G. and Mitchell, A. M., 1956, Eye movement responses to convergence stimuli., Arch Ophthalmol. 55: 848–856.CrossRefGoogle Scholar
  83. Wheeles, L., Boynton. R., and Cohen, G., 1966, Eye movement responses to step and pulse-step stimuli, J Opt. Soc. Am. 56: 956–960.Google Scholar
  84. Yarbus, A. L., 1967 (originally 1956), Eye Movements and Vision, B. Haigh, trans. and L. A. Riggs, ed., Plenum Press, New York.Google Scholar
  85. Young, L. R. and Stark, L., 1962. A sampled-data model for eye tracking movements, Quart. Prog. Rept., Res. Lab. Electronics, M.I.T. 66: 370–383.Google Scholar
  86. Zee, D. S., Fitzgibbon, E. J., and Optican, L. M., 1992, Saccade-vergence interactions in humans, J. Neurophysiol. 68: 1624–1641.Google Scholar
  87. Zee, D. S. and Levi, L., 1989, Neurological aspects of vergence eye movements,. Rev. Neurol. (Paris). 145: 613–620.Google Scholar
  88. Zhu, H. M., 1995,. Investigation of interaction between vergence and saccadic eye movements. M.S. Thesis, Biomedical Engineering, Rutgers University, pp. 35–38.Google Scholar
  89. Zuber, B. L. and Stark, L. 1966. Saccadic suppression: elevation of visual threshold associated with saccadic eye movements, Expt. Neurol. 16: 65–79.CrossRefGoogle Scholar
  90. Zuber, B. L. and Stark, L. 1968, Dynamical characteristics of fusional vergence eye movement system,. IEEE Trans. Syst. Sci. Cybern. 4: 72–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • George K. Hung
    • 1
  • Kenneth J. Ciuffreda
    • 2
  1. 1.Dept. of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Dept. of Vision SciencesState University of New York, State College of OptometryNew YorkUSA

Personalised recommendations