Physiological System Models of the Cornea

  • Jeffrey W. Ruberti
  • Stephen D. Klyce
Part of the Topics in Biomedical Engineering International Book Series book series (TOBE)


The cornea is the primary refractive component of the visual system. It provides the crystal-clear window through which our world is observed. Given the importance of vision to everyday life and the accessibility of the cornea to investigation, it is easy to understand the magnitude and intensity of the research effort that has been focused on this apparently simple tissue. The mystery of its clarity and the dependence of this property on transport physiology ignited the initial frenzy of investigation in the late1940’s while the development of contact lenses, proliferation of refractive surgeries and corneal transplantation spur it on today. Mathematical modeling has and will continue to complement the experimental investigations that have guided our understanding of the interaction between corneal structure and function.


Transport Coefficient Corneal Epithelium Corneal Endothelium Corneal Stroma Rabbit Cornea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, N., 1971, The origin of the basal cell potential in frog corneal epithelium, J. Physiol. (Lond). 219: 57–75.Google Scholar
  2. Akaike, N. and Hori, M., 1970, Effect of anions and cations on membrane potential of rabbit corneal epithelium, Am. J. Physiol. 219: 1811–1818.Google Scholar
  3. Anseth, A., 1961, Studies on corneal polysaccharides. III. Topographic and comparative biochemistry, Exp. Eye Res. 1: 106–115.Google Scholar
  4. Axelsson, I. and Heinegard, D., 1975, Fractionation of proteoglycans from bovine corneal stroma, Biochem. J. 145: 491–500.Google Scholar
  5. Bauer, N. J., Wicksted, J. P., Jongsma, F. H., et al., 1998, Noninvasive assesment of the hydration gradient across cornea using confocal Raman spectroscopy, Invest. Ophthal. Vis. Sci. 39: 831–835.Google Scholar
  6. Benedek, G. B., 1971, Theory of transparency of the eye, Applied Optics. 10: 459–473. Bettelheim, F. A., 1975, The hydration of proteoglycans of bovine cornea, Biochim. Biophys Acta. 381: 203.Google Scholar
  7. Bettelhehn, F. A. and Goetz, D., 1976, Distribution of hexosamines in bovine cornea, Invest. Ophthal. Vis. Sci. 15: 301–304.Google Scholar
  8. Bryant, M. R., Marchi, V. and Juhasz, T., 2000, Mathematical models of picosecond laser keratomileusis for high myopia, J. Refract. Surg. 16: 155–162.Google Scholar
  9. Bryant, M. R. and McDonnell, P. J., 1996, Constitutive laws for biomechanical modeling of refractive surgery, J. Biomech. Eng. 118: 473–481.Google Scholar
  10. Bryant, M. R. and McDonnell, P. J., 1998, A triphasic analysis of corneal swelling and hydration control, J. Biomech. Eng. 120: 370–381.Google Scholar
  11. Bryant, M. R., Velinsky, S. A., Plesha, M. E. and Clarke, G. P., 1987, Computer-aided surgical design in refractive keratotomy, CIAO J. 13: 238–342.Google Scholar
  12. Buschmann, M. D. and Grodzinsky, A. J., 1995, A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics, J. Biomech. Eng. 117: 179–192.Google Scholar
  13. Candia, O. A. and Askew, W. k, 1968, Active sodium transport in the isolated bullfrog cornea, Biochim. Biophys. Acta. 163: 262–265.Google Scholar
  14. Candia, O. A. and Neufeld, A. H., 1978, Topical epinephrine causes a decrease in density of beta-adrenergic receptors and cathecholamine-stimulated chloride transport in the rabbit cornea, Biochim. Biophys. Acta. 543: 403–408.Google Scholar
  15. Candia, O. A. and Reinach, P. S., 1982, Thermodynamic analysis of active sodium and potassium transport in the frog corneal epithelium, Am. J. Physiol. 242: F690–698. Crank, J., 1956, The Mathematics of Diffusion, Oxford University Press, London.Google Scholar
  16. Dayson, H., 1949, Some considerations on the salt content of fresh and old ox corneae, Br. J.OphthaInsoL 33: 175–182.Google Scholar
  17. Dayson, H., 1955, The hydration of the cornea, Biochem. J. 59: 25–28.Google Scholar
  18. Daxer, A., Misof, K., Grabner, B., Ettl, A. and Fratzl, P., 1998, Collagen fibrils in the human corneal stroma: structure and aging, Invest. Ophthal. Vis. Sci. 39: 644–648.Google Scholar
  19. Diamond, J. M., 1979, Topical review. Osmotic water flow in leaky epithelia, J. Membr. BioL 51: 195–216.Google Scholar
  20. Diamond, J. M. and Bossert, W. H., 1967, Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia, J. Gen. Physiol. 50: 2061–2083.Google Scholar
  21. Donn, A., Maurice, D. and Mills, N., 1959, Studies on the living cornea in vitro. I. Method and physiologic measurements, Arch. Ophthalmol. 62: 741–747.Google Scholar
  22. Donn, A., Maurice, D. and Mills, N., 1959, Studies on the living cornea in vitro. II. The active transport of sodium across the epithelium, Arch. Ophthalmol. 62: 748–757.Google Scholar
  23. Edwards, A. and Prausnitz, M. R., 1998, Fiber matrix model of sclera and corneal stroma for drug delivery to the eye, AIchE J. 44: 214–225.Google Scholar
  24. Ehlers, N., 1970, Some comparative studies on the mammalian corneal epithelium, Acta. Ophthalmol. 48: 821–828.Google Scholar
  25. Eisenberg, S. R. and Grodzinsky, A. J., 1985, Swelling of articular cartilage and other connective tissues: electromechanochemical forces, J. Orthop. Res. 3: 148–159.Google Scholar
  26. Eisenberg, S. R. and Grodzinsky, A. J., 1987, The kinetics of chemically induced nonequilibrium swelling of articular cartilage and corneal stroma, J. Biomech. Eng. 109: 79–89.Google Scholar
  27. Elliott, G. F., 1980, Measurement of the electric charge and ion binding of the protein filaments in intact muscle and cornea, with implications for filament assembly., Biophys. J. 32: 95–97.Google Scholar
  28. Elliott, G. F., Goodfellow, J. M. and Woolgar, A. E., 1980, Swelling studies of bovine corneal stroma without bounding membranes, J Physiol. (Land). 298: 453–470.Google Scholar
  29. Elliott, G. F. and Hodson, S. A., 1998, Cornea, and the swelling of polyelectrolyte gels of biological interest, Rep Prog Phys. 61: 1325–1365.Google Scholar
  30. Fatt, I., 1968, Dynamics of water transport in the corneal stroma, Exp. Eye. Res. 7: 402–412. Fatt, I., 1968, Steady-state distribution of oxygen and carbon dioxide in the in vivo cornea. II. The open eye in nitrogen and the covered eye, Exp. Eye. Res. 7: 413–430.Google Scholar
  31. Fatt, I. and Bieber, M. T., 1968, The steady-state distribution of oxygen and carbon dioxide in the in vivo cornea. I. The open eye in air and the closed eye, Exp. Eye Res. 7: 103–112.Google Scholar
  32. Fatt, I., Bieber, M. T. and Pye, S. D., 1969, Steady state distribution of oxygen and carbon dioxide in the in vivo cornea of an eye covered by a gas-permeable contact lens, Am. J. Optom. Arch. Am. Acad. Optom. 46: 3–14.Google Scholar
  33. Fatt, I. and Goldstick, T., 1965, Dynamics of water transport in swelling membranes, J. Colloid Sci. 20: 962–989.Google Scholar
  34. Fee, J. P. and Edelhauser, H. F., 1970, Intracellular electrical potentials in the rabbit corneal epithelium, Exp. Eye Res. 9: 233–40.Google Scholar
  35. Festen, C. M. and Slegers, J. F., 1979, The influence of ions, ouabain, propranolol and amiloride on the transepithelial potential and resistance of rabbit cornea, Exp. Eye Res. 28: 413–426.Google Scholar
  36. Fischbarg, J., 1972, Potential difference and fluid transport across rabbit corneal endothelium, Biochim. Biophys. Acta. 288: 362–366.Google Scholar
  37. Fischbarg, J., 1973, Active and passive properties of the rabbit corneal endothelium, Exp. Eye Res. 15: 615–638.Google Scholar
  38. Fischbarg, J., 1995, A rapidly emerging field: water channel proteins in the eye, Invest. Ophthal. Vis. Sci. 36: 75 8–763.Google Scholar
  39. Fischbarg, J., 1997, Mechanism of fluid transport across corneal endothelium and other epithelial layers: a possible explanation based on cyclic cell volume regulatory changes, Br. J. Ophthalmol. 81: 85–89.Google Scholar
  40. Fischbarg, J., Hernandez, J., Liebovitch, L. S. and Koniarek, J. P., 1985, The mechanism of fluid and electrolyte transport across corneal endothelium: critical revision and update of a model, Curr Eye Res. 4: 351–360.Google Scholar
  41. Fischbarg, J. and Montoreano, R., 1982, Osmotic permeabilities across conical endothelium and antidiuretic hormone-stimulated toad urinary bladder structures, Biochim. Biophys. Acta. 690: 207–214.Google Scholar
  42. Fischbarg, J., Warshaysky, C. R. and Lim, J. J., 1977, Pathways for hydraulically and osmotically-induced water flows across epithelia, Nature. 266: 71–74.Google Scholar
  43. Friedman, M., 1972, A quantitative description of equilibrium and homeostatic thickness regulation in the in vivo cornea. I. Normal cornea, Biophys. 1 12: 648–665.Google Scholar
  44. Friedman, M., 1973, Unsteady transport and hydration dynamics in the in vivo cornea, Biophys. J. 13: 890–910.Google Scholar
  45. Friedman, M., 1978, Mathematical modeling of transport in structured tissues: conical epithelium, Am. J. Physiol. 234: F215 - F224.Google Scholar
  46. Friedman, M. H., 1971, Application of computer experimentation to the cornea, Nature. 233: 553–555.Google Scholar
  47. Friedman, M. H., 1971, General theory of tissue swelling with application to the corneal stroma, J Theor Biol. 30: 93–109.Google Scholar
  48. Friedman, M. H. and Green, K., 1971, Swelling rate of corneal stroma, Exp. Eye Res. 12: 239–250.Google Scholar
  49. Friedrich, S. W., Cheng, Y. L. and Saville, B. A., 1993, Theoretical comeal permeation model for ionizable drugs, J Ocul. Pharmacol. 9: 229–49.Google Scholar
  50. Geroski, D. H., Matsuda, M., Yee, R. W. and Edelhauser, H. F., 1985, Pump function of the human conical endothelium, Ophthalmol. 92: 759–763.Google Scholar
  51. Grass, G. M., Cooper, E. R. and Robinson, J. R., 1988, Mechanisms of corneal drug penetration. III: Modeling of molecular transport, J. Pharm. Sci. 77: 24–26.Google Scholar
  52. Green, K., 1965, Ion transport in isolated cornea of the rabbit, Am. J. Physiol. 209: 1311–1316.Google Scholar
  53. Green, K., 1968, Relation of epithelial ion transport to corneal thickness and hydration, Nature. 217: 1074–1075.Google Scholar
  54. Green, K. and Downs, S. J., 1976, Corneal membrane water permeability as a function of temperature, Invest. Ophthalmol. 15: 304–307.Google Scholar
  55. Green, K. and Green, M., 1969, Permeability to water of rabbit conical membranes, Am. J Physiol. 217: 635–641.Google Scholar
  56. Green, K., Hastings, B. and Friedman, M. H., 1971, Sodium ion binding in isolated corneal stroma, Am. J. Physiol. 220: 520–525.Google Scholar
  57. Grodzinsky, A. J., 1983, Electromechanical and physicochemical properties of connective tissue, Crit. Rev. Biomed. Eng. 9: 133–199.Google Scholar
  58. Hamada, R., Giraud, J. P., Graf, B. and Pouliquen, Y., 1972, Etude analytique et statistique des lamelles, des keratocytes, des fibrillesdel collagene de la region centrale de la comee humaine normale, Arch. Ophthalmol. (Paris). 32: 563–570.Google Scholar
  59. Hanna, K. D., Jouve, F. E. and Waring, G. O. d., 1989, Preliminary computer simulation of the effects of radial keratotomy, Arch. Ophthalmol. 107: 911–918.Google Scholar
  60. Hanna, K. D., Jouve, F. E., Waring, G. O. d. and Ciarlet, P. G., 1989, Computer simulation of arcuate and radial incisions involving the comeoscleral limbus, Eye. 3: 227–239.Google Scholar
  61. Harris, J. and Nordquist, L., 1955, The hydration of the cornea. I. Transport of water from the cornea, Am. J Ophthalmol. 40: 100–110.Google Scholar
  62. Harvitt, D. M. and Bonanno, J. A., 1999, Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia, Optom. Vis. Sci. 76: 712–719.Google Scholar
  63. Hedbys, B. and Dohlman, C., 1963, A new method for the determination of the swelling pressure of the corneal stroma in vitro, Exp. Eye Res. 2: 122–129.Google Scholar
  64. Hedbys, B. and Mishima, S., 1962, Flow of water in the corneal stroma, Exp. Eye Res. 1: 26 2275.Google Scholar
  65. Hedbys, B. and Mishima, S., 1966, The thickness-hydration relationship of the cornea, Exp. Eye Res. 5: 221–228.Google Scholar
  66. Hedbys, B., Mishima, S. and Maurice, D., 1963, The imbibition pressure of the corneal stroma, Exp. Eye Res. 2: 99–111.Google Scholar
  67. Hedbys, B. 0., 1961, The role of polysaccharides in corneal swelling, Exp. Eye Res. 1: 81. Hedbys, B. 0., 1963, Corneal resistance to the flow of water after enzymatic digestion, Exp. Eye Res. 2: 112–121.Google Scholar
  68. Hill, A., 1980, Salt-water coupling in leaky epithelia, J. Membr. Biol. 56: 177–182.Google Scholar
  69. Hill, A. E., 1975, Solute-solvent coupling in epithelia: a critical examination of the standing-gradient osmotic flow theory, Proc. R. Soc. Load. B. Biot. Sci. 190: 99–114.Google Scholar
  70. Hodson, S., 1971, Why the cornea swells, J. Theor. Biol. 33: 419–427.Google Scholar
  71. Hodson, S., Kaila, D., Hammond, S., Rebello, G. and al-Omari, Y., 1992, Transient chlorideGoogle Scholar
  72. binding as a contributory factor to corneal stoma] swelling in the ox, J Physiol (Load). 450: 89–103.Google Scholar
  73. Hodson, S. and Lawton, D., 1987, The apparent reflection coefficient of the leaky cornealGoogle Scholar
  74. endothelium to sodium chloride is about one in the rabbit, J Physiol. (Load). 385: 97–106.Google Scholar
  75. Hodson, S. and Miller, F., 1976, The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea, J. Physiol. (Loud). 263: 563–577.Google Scholar
  76. Hodson, S. and Wigham, C., 1983, The permeability of rabbit and human corneal endothelium, J. Physiol. (Land). 342: 409–419.Google Scholar
  77. Hull, D., Green, K., Boyd, M. and Wynn, H., 1977, Corneal endothelium bicarbonate transport and the effect of carbonic anhydrase inhibitiors on endothelial permeability and fluxes and corneal thickness, Invest. Ophthal. Vis. Sci. 16: 883–892.Google Scholar
  78. Jumblatt, M. M. and Neufeld, A. H., 1983, Beta-adrenergic and serotonergic responsivenessGoogle Scholar
  79. of rabbit corneal epithelial cells in culture, Invest. Ophthal. Vis. Sci. 24: 1139–1143.Google Scholar
  80. Katchalsky, A. and Curran, P. F., 1965, Non-equilibrium thermodynamics in biophysics,Harvard University Press, Cambridge.Google Scholar
  81. Kaye, G. I. and Tice, L. W., 1968, Studies on the cornea. V. Electron microscopic localization of adenosine triphosphate activity in the rabbit cornea in relation to transport., Invest. Ophthalmol. 5: 22.Google Scholar
  82. Kedem, O. and Katchalsky, A., 1958, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta. 27: 229–246.Google Scholar
  83. Kedem, O. and Katchalsky, A., 1961, J. Gen. Physiol. 45: 143.Google Scholar
  84. Kikkawa, Y., 1964, The intracellular potential of the corneal epithelium, Exp. Eye Res. 3: 132.Google Scholar
  85. Kikkawa, Y. and Hirayama, K., 1970, Uneven swelling of the corneal stroma, Invest.Ophthal. Vis. Sci. 9: 735–744.Google Scholar
  86. Kim, J., Green, K., Martinez, M. and Paton, D., 1971, Solute permeability of the corneal endothelium and Descemet’s membrane, Exp. Eye Res. 12: 231–238.Google Scholar
  87. Klyce, S., 1975, Transport of Na, Cl and water by the rabbit corneal epithelium at resting potential, Am. J. Physiol. 228: 1446–1452.Google Scholar
  88. Klyce, S. and Russell, S., 1978, System for monitoring the thickness of transparent layered structures, Rev. Sci. Instrum. 49: 1318–1321.Google Scholar
  89. Klyce, S. and Russell, S., 1979, Numerical solution of coupled transport equations applied to corneal hydration dynamics, J. Physiol. (tond). 292: 107–134.Google Scholar
  90. Klyce, S. D. (1971). Electrophysiology of the corneal epithelium. Department of Physiology. New Haven, Yale University.Google Scholar
  91. Klyce, S. D., 1972, Electrical profiles in the corneal epithelium, J. Physiol. (Land). 226: 407429.Google Scholar
  92. Klyce, S. D., 1981, Stoma] lactate accumulation can account for corneal oedema osmotically following epithelial hypoxia in the rabbit, J. Physiol. (Land). 321: 49–64.Google Scholar
  93. Klyce, S. D. and Beuennan, R. W., 1997, Structure and function of the cornea, H. E. Kaufman, M. B. McDonald and B. A. Barron. The Cornea. Butterworth-Heineman Medical, London, pp. 3–50.Google Scholar
  94. Klyce, S. D., Beuerman, R. W. and Crosson, C. E., 1985, Alteration of corneal epithelial ion transport by sympathectomy, Invest. Ophthal. Vis. Sci. 26: 434–42.Google Scholar
  95. Klyce, S. D. and Crosson, C. E., 1985, Transport processes across the rabbit corneal epithelium a review, Curr. Eye Res. 4: 323–331.Google Scholar
  96. Klyce, S. D. and Marshall, W. S., 1982, Effects of Ag+ on ion transport by the corneal epithelium of the rabbit, J. Membr. Biot 66: 133–144.Google Scholar
  97. Klyce, S. D., Neufeld, A. H. and Zadunaisky, J. A., 1973, The activation of chloride transport by epinephrine and Db cyclic-AMP in the cornea of the rabbit, Invest. Ophthalmol. 12: 127–139.Google Scholar
  98. Klyce, S. D., Palkama, K. A., Harkonen, M., et al., 1982, Neural serotonin stimulates chloride transport in the rabbit corneal epithelium, Invest. Ophthal. Vis. Sci. 23: 181–192.Google Scholar
  99. Klyce, S. D. and Wong, R. K. S., 1977, Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium, J. Physiol. (Lund). 266: 777–799.Google Scholar
  100. Lai, W. M., Hou, J. S. and Mow, V. C., 1991, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Eng. 113: 245–258.Google Scholar
  101. Longhorn, M. E., Hart, R W. and Cox, J., 1969, The interaction of collagen and mucopolysaccharides, M. Longhorn. The Cornea. Macromolecular Organization of a Connective Tissue. Johns Hopkins Press, Baltimore: 157.Google Scholar
  102. Leber, T., 1873, Studien uber den Flussigkeitswechsel im Auge, v. Graefes Arch. Ophthalmol. 19: 87.Google Scholar
  103. Lee, D. and Wilson, G., 1981, Non-uniform swelling properties of the corneal stroma, Curr. Eye. Res. 1: 457–461.Google Scholar
  104. Levick, J. R., 1987, Flow through interstitium and other fibrous matrices, Q. J. Exp. Physiol. 72: 409–437.Google Scholar
  105. Liebovitch, L. and Weinbaum, S., 1981, A model of epithelial transport. The corneal endothelium; Biophys. J. 35: 315–338.Google Scholar
  106. Liebovitch, L. S., Fischbarg, J. and Koatz, R., 1981, Osmotic water permeability of rabbit corneal endothelium and its dependence on ambient concentration, Biochim. Biophys. Acta. 646: 71–76.Google Scholar
  107. Lim, J. J. and Fischbarg, J., 1976, Standing-gradient osmotic flow. Examination of its validity using an analytical method, Biochim. Biophys. Acta. 443: 339–347.Google Scholar
  108. Lim, J. J. and Ussing, H. H., 1982, Analysis of presteady-state Na+ fluxes across the rabbit comeal endothelium, J. Membr. Biot 65: 197–204.Google Scholar
  109. Ling, T., 1987, Osmotically induced central and peripheral corneal swelliing in the cat. Am. J. Opt. Phys. Optics. 64: 674–677.Google Scholar
  110. Mackie, J. S. and Mears, P., 1955, The diffusion of electrolytes in a cation-exchange resin membrane, Proc. R. Soc.. A232: 498–509.Google Scholar
  111. Maroudas, A., 1980, Physical chemistry of articular cartilage and the intervertebral disk, L. Sokoloff. The Joints and Synovial Fluid. Academic Press, New York, I I.Google Scholar
  112. Marshall, W. S. and Klyce, S. D., 1983, Cellular and paracellular pathway resistances in the “tight” Cl-secreting epithelium of rabbit cornea, J. Membr. BioL 73: 275–282.Google Scholar
  113. Marshall, W. S. and Klyce, S. D., 1984, Cellular mode of serotonin action on Cl-transport in the rabbit comeal epithelium, Biochim. Biophys. Acta. 778: 139–43.Google Scholar
  114. Maurice, D., 1951, The permeability to sodium ions of the living rabbit’s cornea, J. Physiol. (Land). 112: 367–391.Google Scholar
  115. Maurice, D., 1957, The structure and transparency of the cornea, J. Physiol. (Lond). 136: 263–286.Google Scholar
  116. Maurice, D., 1972, The location of the fluid pump in the cornea, J. Physiol. (Lo, u1). 221: 43–54.Google Scholar
  117. Maurice, D. M., 1969, The cornea and sclera, in: H. Dayson. The Eye, vol. 1, Academic Press, New York - London, pg. 489.Google Scholar
  118. Maurice, D. M., 1984, The cornea and sclera: lb Vegetative physiology and biochemistry, in: H. Dayson. The Eye, vol. 1, Academic Press, New York.Google Scholar
  119. McCarey, B. E. and Schmidt, F. H., 1990, Modeling glucose distribution in the cornea, Curt. Eye Res. 9: 1025–1039.Google Scholar
  120. Meek, K. M. and Leonard, D. W., 1993, Ultrastnicture of the corneal stroma: a comparative study, Biophys. J. 64: 273–280.Google Scholar
  121. Meyer, K., Linker, A., Davidson, E. A. and Weissmann, B., 1953, The mucopolysaccharides of the bovine cornea, 1 Biol. Chem. 205: 611–616.Google Scholar
  122. Mishima, S. and Hedbys, B., 1967, The permeability of the corneal epithelium and endothelium to water, Exp. Eye Res. 6: 10–32.Google Scholar
  123. Mow, V. C., Kuei, S. C., Lai, W. M. and Armstrong, C. G., 1980, Biphasic creep and stressGoogle Scholar
  124. relaxation of articular cartilage in compression? Theory and experiments, J. Biomech. Eng. 102: 73–84.Google Scholar
  125. Muller, L. J., Fels, L. and Vrensen, G., 1995, Novel aspects of the ultrastructural organization of human corneal keratocytes, Invest. Ophthat Vis. Sci. 36: 2557–2567.Google Scholar
  126. Myers, E. R., Lai, W. M. and Mow, V. C., 1984, A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage, J. Biomech. Eng. 106: 151–158.Google Scholar
  127. Neufeld, A. H., Ledgard, S. E., Jumblatt, M. M. and Klyce, S. D., 1982, Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium, Invest. Ophthal. Vis. ScL 23: 193–198.Google Scholar
  128. Jeffrey Ruberti and Stephen Klyce Onsager, L., 1931, Reciprocal Relations in Irreversible Processes, I., Physiol. Rev. 37: 405.Google Scholar
  129. Otori, T., 1967, Electrolyte content of the rabbit corneal stroma., Exp. Eye Res. 6: 356–367.Google Scholar
  130. Overby, D., Ruberti, J. W., Gong, H., Freddo, T. F. and Johnson, M., Specific hydraulic conductivity of corneal stroma as seen by quick-freeze/deep-etch, J. Biomech. Eng., in press.Google Scholar
  131. Pinsky, P. M. and Datye, D. V., 1991, A microstructurally-based finite element model of the incised human cornea, J Biomech. 24: 907–922.Google Scholar
  132. Rehm, W. S. and Spangler, S. G., 1977, A theory of endothelial control of corneal hydration, Am. J. Optom. Physiol. Opt. 54: 439–4,44.Google Scholar
  133. Riley, M. V., 1977, Anion-sensitive ATPase in rabbit corneal endothelium and its relation to corneal hydration, Exp. Eye Res. 25: 483–494.Google Scholar
  134. Riley, M. V. and Peters, M. I., 1981, The localization of the anion-sensitive ATPase activity in corneal endothelium, Biochim. Biophys. Acta. 644: 251–256.Google Scholar
  135. Riley, M. V., Winkler, B. S., Starnes, C. A., Peters, M. I. and Dang, L., 1998, Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases, Invest. Ophthal. Vis. Sci. 39: 2076–2084.Google Scholar
  136. Ruberti, J. W. (1998), Experimental and computational investigation of corneal transport properties, Dept. Biomedical Engineering New Orleans, Tulane University. Ruberti, J. W., Klyce, S. D., Smolek, M. K. and Karon, M. D., 2000, Anomalous acute inflammatory response in rabbit corneal stroma, Invest. Ophthal. Vis. Sci. 41: 2523–2530.Google Scholar
  137. Sackin, H. and Boulpaep, E. L., 1975, Models for coupling of salt and water transport. Proximal tubular reabsorption in Necturus kidney, J Gen. Physiol. 66: 671.Google Scholar
  138. Scott, J. E., 1994, Keratan sulphate-a ‘reserve’ polysaccharide?, Eur. J Clin. Chem. Clin.Biochem. 32: 217–223.Google Scholar
  139. Segel, L. A., 1970, Standing-gradient flows driven by active solute transport, J Theor. Biol. 29: 233–250.Google Scholar
  140. Shapiro, M. P. and Candia, O. A., 1973, Corneal hydration and metabolically dependent transcellular passive transfer of water, Exp. Eye Res. 15: 659–666.Google Scholar
  141. Skadhauge, E., 1977, Analysis of computer models in transport of ions and water in animals,B. L. Gupta, J. L. Oschman, R. M. Moreton and B. J. Wall. Academic Press, New York. Stanley, J., Mishima, S. and Klyce, S. D., 1966, In vivo determination of endothelial permeability to water, Invest. Ophthal. Vis. Sci. 7: 371–377.Google Scholar
  142. Stiemke, M. M., Roman, R. J., Palmer, M. L. and Edelhauser, H. F., 1992, Sodium activity in the aqueous humor and corneal stroma of the rabbit, Exp. Eye Res. 55: 425–433.Google Scholar
  143. Trenberth, S. and Mishima, S., 1968, The effect of ouabain on the rabbit corneal endothelium, Invest. Ophthal. Vis. Sci. 7: 44–52.Google Scholar
  144. Tuns, R., Friend, J., Riem, M. and Dohlman, C. H., 1971, Glucose concentration and hydration of the comeal stroma, Opthalmol. Res. 2: 253–260.Google Scholar
  145. Ussing, H. H. and Eskesen, K., 1989, Mechanism of isotonic water transport in glands, Acta. Physiol. Scand. 136: 443–454.Google Scholar
  146. Van der Heyden, C., Weekers, J. F. and Schoffeniels, E., 1975, Sodium and chloride transport across the isolated rabbit cornea, Exp. Eye Res. 20: 89–96.Google Scholar
  147. Vito, R. P., Shin, T. J. and McCarey, B. E., 1989, A mechanical model of the cornea: the effects of physiological and surgical factors on radial keratotomy surgery, Refract. Corneal Surg. 5: 82–88.Google Scholar
  148. Wiederholt, M., 1980, Physiology of epithelial transport in the human eye, Klin. Wochenschr. 58: 975–984.Google Scholar
  149. Wiig, H., 1989, Cornea Fluid Dynamics I: Measurement of Hydrostatic and Colloid Osmotic Pressure in Rabbits, Erp. Eye Res. 49: 1015–1030.Google Scholar
  150. Zadunaisky, J. A., 1966, Active transport of chloride in frog cornea, Am. J. Physiol. 211: 506–512.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jeffrey W. Ruberti
    • 1
  • Stephen D. Klyce
    • 2
  1. 1.Cambridge Polymer GroupSomervilleUSA
  2. 2.Dept. of OphthalmologyLouisiana State University Eye CenterNew OrleansUSA

Personalised recommendations