Modulation of Central and Peripheral Rhythmicity in the Heartbeat System of the Leech

  • Ronald L. Calabrese
  • Edmund A. Arbas


Rhythmic movements are programmed by peripheral myogenic oscillators or central neural oscillators called pattern generators (Delcomyn, 1980; Roberts and Roberts, 1983). For peripherally programed rhythms, such as heartbeat in vertebrates, the muscles involved usually produce an endogenous polarization rhythm that drives their contractions. Myogenic oscillators have been amenable to experimental analysis because muscle is readily accessible to cellular techniques (Noble, 1979; Jewell and Ruegg, 1966). For centrally programed rhythms, such as walking, breathing, and chewing, the basic pattern of motor discharge underlying the rhythm can be produced by a part of the CNS that is isolated from all phasic sensory input. Thus a central pattern generator—a network of central neurons that requires at most tonic input to produce an oscillatory output—drives the coordinated pattern of rhythmic motor outflow. Over the past twenty years, we have developed an experimental understanding of how central pattern generators work. Most of this progress has occurred in a few favorable invertebrate preparations (Selverston and Miller, 1984; Getting, 1983; Calabrese and Peterson, 1983) where, owing to the restricted number of neurons in the CNS and the ease with which these neurons are identified and experimentally manipulated, a rigorous cellular approach is possible.


Motor Neuron Leydig Cell Central Pattern Generator Rhythmic Movement Medicinal Leech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. E., and O’Shea, M., 1983, Peptide co-transmitter at a neuromuscular junction, Science 221:286–289.PubMedCrossRefGoogle Scholar
  2. Arbas, E. A., and Calabrese, R. L., 1984, Rate modification in the heartbeat central pattern generator of the leech, J. Comp. Physiol. 155:783–794.CrossRefGoogle Scholar
  3. Benson, J. A., Sullivan, R. E., Watson, W. H., III, and Augustine, G. J., Jr., 1981, The neuropeptide proctolin acts directly on Limulus cardiac muscle to increase the amplitude of contraction, Brain Res. 213:449–454.PubMedCrossRefGoogle Scholar
  4. Boroffka, I., and Hamp, R., 1969, Topographie des kreislaufsystems und Zirkulation bei Hirudo medicinalis, Z. Morph. Tiere 64:59–76.CrossRefGoogle Scholar
  5. Brown, B. E., 1967, Neuromuscular transmitter substance in insect visceral muscle, Science 155:595–597.PubMedCrossRefGoogle Scholar
  6. Calabrese, R. L., 1977, The neural control of alternate heartbeat coordination states in the leech, Hirudo medicinalis, J. Comp. Physiol. 122:111–143.CrossRefGoogle Scholar
  7. Calabrese, R. L., 1979, The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medicinalis, J. Exp. Biol. 82:163–176.Google Scholar
  8. Calabrese, R. L., and Maranto, A. R., 1984, Neural control of the hearts in the leech, Hirudo medicinalis III. Control of myogenicity and muscle tension by heart accessory neurons, J. Comp. Physiol. 154:393–406.CrossRefGoogle Scholar
  9. Calabrese, R. L., and Peterson, E. L., 1984, Neural control of heartbeat in the leech, Hirudo medicinalis, Symp. Soc. Exp. Biol. 37: 154:393–406.Google Scholar
  10. Calabrese, R. L., Kuhlman, J. R., and Li, C., 1984, FMRHamide-like substances in the leech: Bioactivity on the heartbeat system, Neurosci. Abstr. 10:46–2.Google Scholar
  11. Cottrell, G. A., Schot, L. P. C., and Dockray, G. J., 1983, Identification and probable role of a single neuron containing the neuropeptide Helix FMRFamide, Nature (London) 304:638–640.CrossRefGoogle Scholar
  12. Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492–498.PubMedCrossRefGoogle Scholar
  13. Evans, P. D., and O’Shea, M., 1978, The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust, J. Exp. Biol. 73:235–260.PubMedGoogle Scholar
  14. Getting, P. A., 1983, Interaction of network, synaptic, and cellular properties in pattern generation, Symp. Soc. Exp. Biol. 37:89–128.PubMedGoogle Scholar
  15. Jewell, B. R., and Ruegg, J. C., 1966, Oscillatory contraction of an insect fibrillar muscle after glycerol extraction, Proc. R. Soc. (London) Ser. B 164:428–459.CrossRefGoogle Scholar
  16. Kristan, W. B. Jr., Stent, G. S., and Ort, C. A., 1974, Neuronal control of swimming in the medicinal leech III. Impulse patterns of the motor neurons, J. Comp. Physiol. 94:155–176.CrossRefGoogle Scholar
  17. Kuhlman, J. R., Calabrese, R. L., and Li, C., 1984, FMRFamide-like substances in the leech: Immunocytochemical localization, Neurosci. Abstr. 10:46.1.Google Scholar
  18. Kupfermann, I., 1979, Modulatory actions of neurotransmitters, Annu. Rev. Neurosci. 2:447–465.PubMedCrossRefGoogle Scholar
  19. Macagno, E. R., 1980, The number and distribution of neurons in leech segmental ganglia, J. Comp. Neurol. 190:283–302.PubMedCrossRefGoogle Scholar
  20. Mann, H., 1962, Leeches (Hirudinea). Their Structure, Physiology, Ecology and Embryology, Pergammon Press, New York.Google Scholar
  21. Maranto, A. R., and Calabrese, R. L., 1984a, Neural control of the hearts in the leech, Hirudo medicinalis I. Anatomy, electrical coupling, and innervation of the hearts, J. Comp. Physiol. 154:367–380.CrossRefGoogle Scholar
  22. Maranto, A. R., and Calabrese, R. L., 1984b, Neural control of the hearts in the leech, Hirudo medicinalis II. Myogenic activity and its control by heart motor neurons, J. Comp. Physiol. 154:381–391.CrossRefGoogle Scholar
  23. May, T. E., Brown, B. E., and Clements, A. N., 1979, Experimental studies upon a bundle of tonic fibers in the locust extensor tibialis muscle, J. Insect Physiol. 25:169–181.CrossRefGoogle Scholar
  24. Nicholls, J. G., and Baylor, D. A., 1968, Specific modalities and receptive fields of sensory neurons in the c.n.s. of the leech, J. Neurophysiol. 31:740–756.PubMedGoogle Scholar
  25. Noble, D., 1979, The Initiation of the Heartbeat, Clarendon Press, Oxford.Google Scholar
  26. Painter, S. D., and Greenberg, M. J., 1982, A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and 5-hydroxytryptamine, Biol. Bull. 162:311–332.CrossRefGoogle Scholar
  27. Payton, B., 1981, Structure of the leech nervous system, in: Neurobiology of the Leech (K. J. Muller, J. G. Nicholls, and G. S. Stent, eds.), Cold Spring Harbor Laboratory, New York, pp. 27–34.Google Scholar
  28. Peterson, E. L., 1983a, Generation and coordination of heartbeat timing oscillation in the medicinal leech. I. Oscillation in isolated ganglia, J. Neurophysiol. 49:611–626.PubMedGoogle Scholar
  29. Peterson, E. L., 1983b, Generation and coordination of heartbeat timing oscillation in the medicinal leech. II. Intersegmental coordination, J. Neurophysiol. 49:627–638.PubMedGoogle Scholar
  30. Peterson, E. L., and Calabrese, R. L., 1982, Dynamic analysis of a rhythmic neural circuit in the leech, Hirudo medicinalis, J. Neurophysiol. 47:256–271.Google Scholar
  31. Piek, T., and Mantel, P., 1977, Myogenic contractions in locust muscle induced by proctolin and by wasp, Philanthus triangulum, venom, J. Insect Physiol. 23:321–325.CrossRefGoogle Scholar
  32. Price, D. A., and Greenberg, M. J., 1977, Structure of a molluscan cardioexcitatory neuropeptide, Science 197:670–671.PubMedCrossRefGoogle Scholar
  33. Roberts, B. L., and Roberts, A. (eds.), 1983, Neural origin of rhythmic movements, Symp. Soc. Exp. Biol. 37:195–221.Google Scholar
  34. Schwarz, T. L., Harris-Warrick, R. M., Glusman, S., and Kravitz, E. A., 1980, A peptide action in a lobster neuromuscular preparation, J. Neurobiol. 11:623–628.PubMedCrossRefGoogle Scholar
  35. Selverston, A. I., and Miller, J. P., 1984, Co-operative mechanisms for the production of rhythmic movements, Symp. Soc. Exp. Biol. 37:55–87.Google Scholar
  36. Sullivan, R. E., 1979, Proctolin-like peptide in crab pericardial organs, J. Exp. Zool. 210:543–552.CrossRefGoogle Scholar
  37. Thompson, W. J., and Stent, G. S., 1976a, Neuronal control of the heartbeat in the medicinal leech. I. Generation of the vascular constriction rhythm by heart motor neurons, J. Comp. Physiol. 111:261–279.CrossRefGoogle Scholar
  38. Thompson, W. J., and Stent, G. S., 1976b, Neuronal control of the heartbeat in the medicinal leech. II. Intersegmental coordination of heart motor neuron activity by heart interneurons, J. Comp. Physiol. 111:281–307.CrossRefGoogle Scholar
  39. Thompson, W. J., and Stent, G. S., 1976c, Neuronal control of the heartbeat in the medicinal leech. III. Synaptic relations of heart interneurons, J. Comp. Physiol. 111:309–333.CrossRefGoogle Scholar
  40. Weeks, J. C., and Kristan, W. B., Jr., 1978, Initiation, maintenance and modulation of swimming in the medicinal leech by the activity of a single neuron, J. Exp. Biol. 77:71–88.Google Scholar
  41. Weiss, K. R., Cohen, J. L., and Kupfermann, I., 1978, Modulatory control of buccal musculature by a serotonergic neuron (metacerebral cell) in Aplysia, J. Neurophysiol. 41:181–203.PubMedGoogle Scholar
  42. Willard, A. L., 1981, Effects of serotonin on the generation of the motor program for swimming by the medicinal leech, J. Neurosci. 1:936–944.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Ronald L. Calabrese
    • 1
  • Edmund A. Arbas
    • 1
  1. 1.The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations