Skip to main content

Extrinsic Inputs and Flexibility in the Motor Output of the Lobster Pyloric Neural Network

  • Chapter
Model Neural Networks and Behavior

Abstract

In recent years, our understanding of motor behavior in terms of single-cell activity has been primarily concerned with determining the functional structure of central pattern generators (CPGs) (Selverston, 1980). To analyze such a structure, i.e., to identify the neuronal components and determine the mutual interactions between these components, “naked” CPGs (i.e., completely deafferented CPGs) must be used. Nevertheless, the patterned activity that can be recorded from such an isolated CPG is relatively stereotyped, and until now, little was known about the mechanisms by which such a network could exhibit flexibility in its output in the intact animal. The goal of this chapter is to show how extrinsic inputs to a well-known CPG (the pyloric network of Crustacea, see Chapter 3, this volume) can continuously control the expression of the intrinsic properties of the neurons and thereby continuously “rewire” the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, W. W., and Barker, D. L., 1981, Synaptic mechanisms that generate network oscillations in the absence of discrete postsynaptic potentials, J. Exp. Zool. 216:187–191.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., and Gainer, H., 1974, Peptide regulation of bursting pacemaker activity in a molluscan neurosecretory cell, Science 184:1371–1373.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., Ifshin, M., and Gainer, H., 1975, Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones, Brain Res. 84:501–513.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, I. M., and Hartline, D. K., 1975, Neurohormonal alterations of integrative properties of the cardiac ganglion of the lobster Homaros americanus, J. Exp. Biol. 63:33–52.

    CAS  Google Scholar 

  • Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492–498.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, P. S., and Nagy F., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones, J. Exp. Biol. 105:59–82.

    PubMed  CAS  Google Scholar 

  • Eisen, J. S., and Marder, E., 1984, A mechanism for the production of phase shifts in a pattern generator, J. Neurophysiol. 51:1375–1393.

    PubMed  CAS  Google Scholar 

  • Gagerman, E., Idahl, L. A., Meissner, H. P., and Taljedal, I. B., 1978, Insulin release, cGmP, cAMP and membrane potential in acetylcholine stimulated islets, Am. J. Physiol. 235:493–500.

    Google Scholar 

  • Giles, W., and Noble, S. J., 1976, Changes in membrane currents in bullfrog atrium produced by acetylcholine, J. Physiol. (London) 276:103–123.

    Google Scholar 

  • Gola, M., and Selverston, A. I., 1981, Ionic requirements for bursting activity in lobster stomatogastric neurones, J. Comp. Physiol. 145:191–207.

    Article  CAS  Google Scholar 

  • Grillner, S., 1975, Locomotion in vertebrates, central mechanisms and reflex interaction, Physiol. Rev. 55:247–304.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S., 1977, On the neural control of movement. A comparison of different basic rhythmic behaviors, in: Function and Formation of Neural Systems (G. S. Stent, ed.), Dahlem Konferenzen, Berlin, pp. 197–224.

    Google Scholar 

  • Ifshin, M., Gainer, H., and Barker, J. L., 1975, Peptide factor extracted from molluscan ganglia that modulates bursting pacemaker activity, Nature (London) 254:72–73.

    Article  CAS  Google Scholar 

  • Ikeda, K., and Wiersma, C. A. G., 1964, Autogenic rhythmicity in the abdominal ganglia of the crayfish: The control of swimmeret movements, Comp. Biochem. Physiol. 12:107–115.

    Article  PubMed  CAS  Google Scholar 

  • Kits, K. S., and Bos, N. P. A., 1981, Pacemaking mechanisms of the after discharge of the ovulation hormone-producing caudo-dorsal cells in the gastropod mollusc, Lymnaea stagnalis, J. Neurobiol. 12:425–439.

    Article  CAS  Google Scholar 

  • Kristan, W. B., and Guthrie, P. B., 1977, Acquisition of swimming behavior in chronically isolated single segment of the leech, Brain Res. 131:191–195.

    Article  PubMed  Google Scholar 

  • Lemos, J. R., and Berlind, A., 1981, Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion, J. Exp. Biol. 90:307–326.

    CAS  Google Scholar 

  • Marder, E., 1984, Mechanisms underlying neurotransmitter modulation of a neuronal circuit, Trends Neurosci. 7:48–53.

    Article  Google Scholar 

  • Marder, E., and Eisen, J. S., 1984, Electrically coupled pacemaker neurons respond differently to the same physiological inputs and neurotransmitters, J. Neurophysiol. 51:1362–1374.

    PubMed  CAS  Google Scholar 

  • Mayeri, E., Brownel, P., Branton, W. D., and Simon, S. B., 1979, Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia, I. Effects on bursting pacemaker neurons, J. Neurophysiol. 42:1165–1184.

    PubMed  CAS  Google Scholar 

  • Maynard, D. M., 1972, Simpler networks, Ann. NY. Acad. Sci. 193:59–72.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. P., and Selverston, A. I., 1982, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, II. Oscillatory properties of pyloric neurons, J. Neurophysiol. 48:1378–1391.

    PubMed  CAS  Google Scholar 

  • Moulins, M., and Cournil, I., 1982, All-or-none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator, J. Neurobiol. 13:447–458.

    Article  PubMed  CAS  Google Scholar 

  • Moulins, M., and Nagy, F., 1983, Control of integration by exogenous inputs in crustacean neuronal circuits, J. Physiol (Paris) 78:755–764.

    CAS  Google Scholar 

  • Nagy, F., 1981, Etude de l’expression d’activités motrices rythmiques organisées par des générateurs paucineuroniques du système nerveux stomatogastrique des Crustacés décapodes. Flexibilité intrinsèque aux réseaux moteurs; contrôle par les centres supérieurs; contrôle proprioceptif, Thèse d’Etat Université de Bordeaux I.

    Google Scholar 

  • Nagy, F., and Dickinson, P. S., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea, I. Modulation of the pyloric motor output, J. Exp. Biol. 105:33–58.

    PubMed  CAS  Google Scholar 

  • Nagy, F., Dickinson, P. S., and Moulins, M., 1981, Modulatory effects of a single neuron on the activity of the pyloric pattern generator in Crustacea, Neurosci. Lett. 23:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, F., Benson, J. A., and Moulins, M., 1984, Cholinergic activation of burst generating oscillations mediated by opening of Ca++ channels in lobster pyloric neurons, Soc. Neurosa. Abstr. 10:148.

    Google Scholar 

  • Parnas, I., Armstrong, D., and Strumwasser, F., 1974, Prolonged excitatory and inhibitory synaptic modulation of a bursting pacemaker neuron, J. Neurophysiol. 37:594–608.

    PubMed  CAS  Google Scholar 

  • Raper, J. A., 1979, Nonimpulse mediated synaptic transmission during the generation of a cyclic motor program, Science 205:304–306.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, H., 1974, Localization of beta-adrenergie receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle, J. Physiol. (London) 242:429–451.

    CAS  Google Scholar 

  • Rezer, E., and Moulins, M., 1983, Expression of the crustacean pyloric pattern generator in the intact animal, J. Comp. Physiol. 153:17–28.

    Article  Google Scholar 

  • Robertson, R. M., and Moulins, M., 1981, Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion, I. The pyloric rhythm, J. Comp. Physiol. 143:453–463.

    Article  Google Scholar 

  • Russell, D. F., and Hartline, D. K., 1978, Bursting neural networks: A reexamination, Science 200:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Selverston, A. I., 1980, Are central pattern generators understandable, Behav. Brain Sci. 3:535–571.

    Article  Google Scholar 

  • Selverston, A. I., and Miller, J. P., 1980, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, I. Pyloric system, J. Neurophysiol. 44:1102–1121.

    PubMed  CAS  Google Scholar 

  • Selverston, A. I., Russell, D. F., Miller, J. P., and King, D. G., 1976, The stomatogastric nervous system: Structure and function of a small neural network, Prog. Neurobiol. 7:215–290.

    Article  PubMed  CAS  Google Scholar 

  • Stein, P. S. G., 1977, Application of the mathematics of coupled oscillator systems to the analysis of the neural control of locomotion, Fed. Proc. 36:2056–2059.

    PubMed  CAS  Google Scholar 

  • Stein, P. S. G., 1978, Motor systems with specific reference to the control of locomotion, Annu. Rev. Neurosci. 1:61–81.

    Article  PubMed  CAS  Google Scholar 

  • Ten Eick, R., Nawrath, H., McDonald, T. F., and Trautwein, W., 1976, On the mechanism of the negative inotropic effect of acetylcholine, Pflug. Arch. Eur. J. Physiol. 361:207–213.

    Article  Google Scholar 

  • Watanabe, A., Obara, S., and Akiyama, T., 1969, Acceleratory synapses on pacemaker neurons in the heart ganglion of a stomatopod, Squilla oratoria, J. Gen. Physiol. 54:212–231.

    Article  CAS  Google Scholar 

  • Wilson, D. M., and Wyman, R. J., 1965, Motor output patterns during random and rhythmic stimulations of locust thoracic ganglia, Biophysiol. J. 5:121–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moulins, M., Nagy, F. (1985). Extrinsic Inputs and Flexibility in the Motor Output of the Lobster Pyloric Neural Network. In: Selverston, A.I. (eds) Model Neural Networks and Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5858-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5858-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5860-3

  • Online ISBN: 978-1-4757-5858-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics