Genetic and Molecular Studies of a Potassium Channel Gene in Drosophila

  • Yuh Nung Jan
  • Lily Yeh Jan


Molecular studies of functionally important elements in the nervous system have advanced rapidly in certain areas (e.g., studies of acetylcholine receptors and Na+ channels), because there are specific high-affinity toxins and antibodies as well as organisms with specialized tissues that contain a large number of these molecules. Unfortunately, this is not true for most molecules that are important for neural function or development, and purification and biochemical studies of these molecules have been very difficult. Various alternative approaches have been proposed. For instance, “transport specificity fractionation” has been used successfully in the purification of an ATP-dependent calcium transport protein (Papazian et al., 1979). One general approach to studying molecules that is important for neuronal function or neural development is to make use of genetics and molecular biology that has been well developed in certain organisms like Caenorhabditis elegans and Drosophila. If one can identify genes that are important for the function or development of the nervous system, one should be able to isolate them by molecular cloning and then begin to study these genes and their gene products in molecular terms. In this chapter, we will use the current studies of a gene in Drosophila for a voltage-sensitive K+ channel as an example to illustrate this general approach.


Channel Gene Channel Inactivation Chromosome Walking Hybrid Dysgenesis Salivary Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., Smith, S. J., and Thompson, S. H., 1980, Ionic currents in molluscan soma, Annu. Rev. Neurosci. 3:141.PubMedCrossRefGoogle Scholar
  2. Adams, P. R., Brown, D. A., and Constanti, A., 1982, Pharmacological inhibition of the M-current, J. Physiol. 332:223.PubMedGoogle Scholar
  3. Barnard, E. A., Mileda, R., and Sumikawa, K., 1982, Translation of exogenous messenger RNA encoding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes, Proc. R. Soc. London B. 215:241.CrossRefGoogle Scholar
  4. Bingham, P. M., Levis, R., and Rubin, G. M., 1981, Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method, Cell 25:693.PubMedCrossRefGoogle Scholar
  5. Byrne, J. H., 1980, Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in Aplysia californica, J. Neurophysiol. 43:630.Google Scholar
  6. DePeyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuther, H., 1982, Ca2+-activated K+ conductance in internally perfused neurons is enhanced by protein phosphoyrlation, Proc. Natl. Acad. Sci. U.S.A. 79:4207.CrossRefGoogle Scholar
  7. Engels, W. R., 1981, Hybrid dysgenesis in Drosophila and the stochastic loss hypothesis, Cold Spring Harbor Symp. Quant. Biol. 45:561.PubMedCrossRefGoogle Scholar
  8. Goldberg, D. A., Posakony, J. W., and Manialis, T., 1983, Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line, Cell 34:59–73.PubMedCrossRefGoogle Scholar
  9. Hugues, M., Duval, D., Kitabgi, P., Lazkunski, M., and Vincent, J. P., 1982, Preparation of a pure monoiodo derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes, J. Biol. Chem. 257:2762.PubMedGoogle Scholar
  10. Jan, L. Y., Barbel, S., Timpe, L., Laffer, C., Salkoff, L., O’Farrell, P., and Jan, Y. N., 1983, Mutating a gene for a K+ channel by hybrid dysgenesis: An approach to the cloning of the Shaker locus in Drosophila, Cold Spring Harbor Symp. Quant. Biol. 48:233–245.CrossRefGoogle Scholar
  11. Jan, L. Y., Papazian, D. M., Jan, Y. N., and O’Farrell, P. H., 1984, Cloning of potassium channel gene(s) in the Shaker locus of Drosophila, Neurosci. Abstr. 10:1089.Google Scholar
  12. Jan, Y. N., and Jan, L. Y., 1980, Genetic disection of synaptic transmission in Drosophila melanogaster, in: Insect Neurobiology and Pesticide Action (F. E. Rickett, ed.), The Society of Chemical Industry, London, pp. 161–168.Google Scholar
  13. Jan, Y. N., Jan, L. Y. and Dennis, M. J., 1977, Two mutations of synaptic transmission in Drosophila, Proc. R. Soc. London B. 198:87.CrossRefGoogle Scholar
  14. Klein, M., and Kandel, E. R., 1980, Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. U.S.A. 77:6912.PubMedCrossRefGoogle Scholar
  15. Klein, M., Camardo, J. and Kandel, E. R., 1982, Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia, Proc. Natl. Acad. Sci. U.S.A. 79:5713.PubMedCrossRefGoogle Scholar
  16. Llinas, R., Sugimori, M., and Simon, S. M., 1982, Transmission by presynaptic spike-like depolarization in the squid giant synapse, Proc. Natl. Acad. Sci. U.S.A. 79:2415.PubMedCrossRefGoogle Scholar
  17. Maniati, S. T., Hardison, R. C., Lacy, E., Lauer, J., O’Connell, C., Quon, D., Sim, D. K., and Efstratiadis, A., 1978, The isolation of structural genes from libraries of eucaryotic DNA, Cell 15:687.CrossRefGoogle Scholar
  18. Modolell, J., Bender, W., and Meselson, M., 1983, Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element, Proc. Natl. Acad. Sci. U.S.A. 80:1678.PubMedCrossRefGoogle Scholar
  19. O’Hare, K., and Rubin, G. M., 1983, Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome, Cell 34:25–35.PubMedCrossRefGoogle Scholar
  20. Papazian, D. M., Rahamimoff, H., and Goldin, S. M., 1979, Reconstitution and purification by “transport specificity fractionation” of an ATP-dependent calcium transport component from synapto-some-derived vesicles, Proc. Natl. Acad. Sci. U.S.A. 76:3708.PubMedCrossRefGoogle Scholar
  21. Rubin, G. M., and Spradling, A. C., 1982, Genetic transformation of Drosophila with transposable element vectors, Science 218:348.PubMedCrossRefGoogle Scholar
  22. Rubin, G. M., Kidwell, M. G., and Bingham, P. M., 1982, The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations, Cell 29:987.PubMedCrossRefGoogle Scholar
  23. Salkoff, L., 1983, Genetic and voltage-clamp analysis of a Drosophila K+ channel, Cold Spring Harbor Symp. Quant. Biol. XLVIII:221–231.CrossRefGoogle Scholar
  24. Salkoff, L., and Wyman, R., 1981, Genetic modification of potassium channels in Drosophila Shaker mutants, Nature (London) 293:228.CrossRefGoogle Scholar
  25. Scholnick, S. B., Morgan, B. A., and Hirsh, J., 1983, The cloned dopa decarboxylase gene is developmentally regulated when reintegrated into the Drosophila genome, Cell 34:37–45.PubMedCrossRefGoogle Scholar
  26. Searles, L. L., Jokerst, R. S., Bingham, P. M., Voelker, R. A., and Greenleaf, A. L., 1982, Molecular cloning of sequences from a Drosophila RNA polymerase II locus by p element transposon tagging, Cell 31:585.PubMedCrossRefGoogle Scholar
  27. Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurons, Nature (London) 299:413.CrossRefGoogle Scholar
  28. Spradling, A. C., and Rubin, G. M., 1983, The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene, Cell 34:47–57.PubMedCrossRefGoogle Scholar
  29. Tanouye, M. A., Ferrus, A., and Fujita, S. C., 1981, Abnormal action potentials associated with the Shaker locus of Drosophila, Proc. Natl. Acad. Sci. U.S.A. 78:6548.PubMedCrossRefGoogle Scholar
  30. Wolfner, M., 1980, Ecdysone responsive genes of the salivary gland of Drosophila melanogaster, Ph.D. Thesis, Stanford University.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Yuh Nung Jan
    • 1
  • Lily Yeh Jan
    • 1
  1. 1.Department of PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations