The Drosophila Thorax as a Model System for Neurogenetics

  • Robert J. Wyman
  • John B. Thomas
  • Lawrence Salkoff
  • Walter Costello


Each scientific question requires careful choice of the experimental system in which an attempt to answer the question will be made. If a familiar system can be used, this has the tremendous advantage of allowing the researcher to capitalize on all the information about the system that previous researchers have gained. Developing a new experimental system may take many scientist-years of effort before the rewards can be reaped. There are outstanding success stories in using both old and new systems, e.g., the continuing excellence of the cat as a neurophysiological system (Hubel, 1982; Wiesel, 1982) and the emergence of Aplysia as a superb animal for cellular neurophysiology (Kandel, 1976).


Flight Muscle Lucifer Yellow Thoracic Ganglion Single Spike Lateral Bend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akam, M. E., 1983, The location of Ultrabithorax transcripts in Drosophila tissue sections, EMBO J 2:2075–2084.PubMedGoogle Scholar
  2. Alawi, A. A., and Pak, W. L., 1971, On-transient of insect electroretinogram: Its cellular origin, Science 172:1055–1057.PubMedCrossRefGoogle Scholar
  3. Ashburner, M., and Novitski, E. (eds.), 1976–1983, The Genetics and Biology of Drosophila, Volumes 1a-3c, Academic Press, New York.Google Scholar
  4. Bentley, D., 1975, Single gene cricket mutations: Effects on behavior, sensilla, sensory neurons, and identified interneurons, Science 187:760–764.PubMedCrossRefGoogle Scholar
  5. Benzer, S., 1973, Genetic dissection of behavior, Sci. Am. 229:24–37.PubMedCrossRefGoogle Scholar
  6. Brenner, S., 1973, The genetics of behavior, Br. Med. Bull. 29:269–271.PubMedGoogle Scholar
  7. Caviness, V. S., Jr., and Rakic, P., 1978, Mechanisms of cortical development: A view from mutations in mice, Annu. Rev. Neurosci. 1:297–326.PubMedCrossRefGoogle Scholar
  8. Coggshall, J. C., 1978, Neurons associated with the dorsal longitudinal flight muscles of Drosophila melanogaster, J. Comp. Neurol. 177:707–720.PubMedCrossRefGoogle Scholar
  9. Coggshall, J. C., Boschek, C. B., and Buchner, S. M., 1973, Preliminary investigations on a pair of giant fibres in the central nervous system of dipteran flies, Z. Naturforsch. 28:783–4.Google Scholar
  10. Costello, W. J., and Salkoff, L., 1982, Suppression of abnormal synaptic vesicle depletion by divalent cations in the Drosophila mutant shibire, Soc. Neurosci. Abstr. 8:494.Google Scholar
  11. Costello, W. J., and Thomas, J. B., 1981, Development of thoracic muscles in muscle-specific mutant and normal Drosophila melanogaster, Soc. Neurosci. Abstr. 7:543.Google Scholar
  12. Deak, I. I., 1978, Thoracic duplications in the mutant wingless of Drosophila and their effect on muscles and nerves, Dev. Biol. 66:422–441.PubMedCrossRefGoogle Scholar
  13. Eaton, R. C., 1984, Neural Mechanism in Startle Behavior, Plenum Press, New York.Google Scholar
  14. Goodman C. S., 1978, Isogenic grasshoppers: Genetic variability in the morphology of identified neurons, J. Comp. Neurol. 182:681–706.PubMedCrossRefGoogle Scholar
  15. Hafen, E., Levine, M., and Gehring, W. J., 1984, Regulation of Antennapedia transcript distribution by the bithorax complex in Drosophila, Nature (London) 307:287–289.CrossRefGoogle Scholar
  16. Harcombe, E. S., and Wyman, R. J., 1977, Output pattern generation by Drosophila flight motoneurons, J. Neurophysiol. 40:1066–1077.PubMedGoogle Scholar
  17. Harcombe, E. S., and Wyman, R. J., 1978, The cyclically repetitive firing sequences of Drosophila flight motorneurons, J. Comp. Physiol. 123:171–179.CrossRefGoogle Scholar
  18. Horvitz, H. R., Sternberg, P. W., Greenwald, I. S., Fixsen, W., and Moyed Ellis, H., 1983, Mutations that affect neural cell lineages and cell fates during the development of Caenorhabditis elegans, Cold Spring Harbor Symp. Quant. Biol. 48:453–462.PubMedCrossRefGoogle Scholar
  19. Hubel, D. H., 1982, Exploration of the primary visual cortex, 1955–78, Nature (London) 299:515–524.CrossRefGoogle Scholar
  20. Ikeda, K., 1976, Temperature controlled release of flight pattern by a single-gene mutant in Drosophila melanogaster, Fed. Proc. 35:642.Google Scholar
  21. Ikeda, K., and Kaplan, W. D., 1970, Patterned neural activity of a mutant Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A. 66:765–772.PubMedCrossRefGoogle Scholar
  22. Ikeda, K., Koenig, J. H., and Tsuruhara, T., 1980, Organization of identified axons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster, J. Neurocytol. 9:799–823.PubMedCrossRefGoogle Scholar
  23. Jan, L. Y., and Jan, Y. N., 1976, Properties of the larval neuromuscular junction in Drosophila melanogaster, J. Physiol. 262:189–213.PubMedGoogle Scholar
  24. Jan, L. Y., Jan, Y. N., and Dennis, M. J., 1977, Two mutations of synaptic transmission in Drosophila, Proc. R. Soc. Ser. B 198:87–108.CrossRefGoogle Scholar
  25. Kandel, E. R., 1976, Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology, W. H. Freeman, San Francisco, California.Google Scholar
  26. Kaplan, W. D., and Trout, W. E., III, 1969, The behavior of four neurological mutants of Drosophila, Genetics 61:399–409.Google Scholar
  27. King, D. G., and Valentino, K. L., 1983, On neuronal homology: A comparison of similar axons in Musca, Sarcophaga, and Drosophila (Diptera: Schizophora), J. Comp. Neurol. 219:1–9.PubMedCrossRefGoogle Scholar
  28. King, D. G., and Wyman, R. J., 1980, Anatomy of the giant fiber pathway in Drosophila. I. Three thoracic components of the pathway, J. Neurocytol. 9:753–770.PubMedCrossRefGoogle Scholar
  29. Koenig, J. H., and Ikeda, K., 1980, Neural interactions controlling timing of flight muscle activity in Drosophila, J. Exp. Biol. 87:121–136.PubMedGoogle Scholar
  30. Koenig, J. H., and Ikeda, K., 1983, Reciprocal excitation between identified flight motor neurons in Drosophila and its effect on pattern generation, J. Comp. Physiol. 150:305–317.CrossRefGoogle Scholar
  31. Kosaka, T., and Ikeda, K., 1985, Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila, J. Neurobiol. 14:207–225.CrossRefGoogle Scholar
  32. Koto, M. L., 1983, Morphology of giant fiber system neurons in wild-type and mutant Drosophila melanogaster, Ph.D. Thesis, Yale University, New Haven, Connecticut.Google Scholar
  33. Koto, M. L., Tanouye, M. A., Ferrus, A., Thomas, J. B., and Wyman, R. J., 1981, The morphology of the cervical giant fiber neuron of Drosophila, Brain Res. 221:213–217.CrossRefGoogle Scholar
  34. Lawrence, P. A., 1982, Cell lineage of the thoracic, muscles of Drosophila, Cell 29:493–503.PubMedCrossRefGoogle Scholar
  35. Levine, J. D., and Wyman, R. J., 1973, Neurophysiology of flight in wild-type and a mutant Drosophila, Proc. Natl. Acad. Sci. U.S.A. 70:1050–1054.PubMedCrossRefGoogle Scholar
  36. Lewis, E. B., 1978, A gene complex controlling segmentation in Drosophila, Nature 276:565–570.PubMedCrossRefGoogle Scholar
  37. Mulloney, B., 1969, Interneurons in the central nervous system of flies and the start of flight, Z. Vergl. Physiol. 64:243–253.CrossRefGoogle Scholar
  38. Mulloney, B., 1970, Organization of flight motoneurons of Diptera, J. Neurophysiol. 33:86–95.PubMedGoogle Scholar
  39. Pak, W. L., Grossfield, J., and White, N. V., 1969, Nonphototactic mutants in a study of vision of Drosophila, Nature, (London) 222:351–354.CrossRefGoogle Scholar
  40. Palka, J., and Ghysen, A., 1982, Segments, compartments and axon paths in Drosophila, Trends Neurosci. 5:382–386.CrossRefGoogle Scholar
  41. Power, M. E., 1948, The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster, J. Comp. Neurol. 88:347–409.PubMedCrossRefGoogle Scholar
  42. Salkoff, L., 1983a, Drosophila mutants reveal two components of fast outward current, Nature, (London) 302:249–251.CrossRefGoogle Scholar
  43. Salkoff, L., 1983b, Genetic and voltage clamp analysis of a Drosophila potassium channel, Cold Spring Harbor Symp. Quant. Biol. 48:221–231.PubMedCrossRefGoogle Scholar
  44. Salkoff, L., and Wyman, R. J., 1980, Facilitation of membrane electrical excitability in Drosophila, Proc. Natl. Acad. Sci. U.S.A. 77:6216–6220.PubMedCrossRefGoogle Scholar
  45. Salkoff, L., and Wyman, R. J., 1981a, Outward currents in developing Drosophila flight muscle, Science, 212:461–463.PubMedCrossRefGoogle Scholar
  46. Salkoff, L., and Wyman, R. J., 1981b, Genetic modification of potassium channels in Drosophila Shaker mutants, Nature (London) 293:228–230.CrossRefGoogle Scholar
  47. Salkoff, L., and Wyman, R. J., 1983a, Ion currents in Drosophila flight muscles, J. Physiol. 337:687–709.PubMedGoogle Scholar
  48. Salkoff, L., and Wyman, R. J., 1983b, Ion channels in Drosophila muscle, Trends Neurosci. 6:128–133.CrossRefGoogle Scholar
  49. Segal, M., Rogawski, M. A., and Barker, J. L., 1984, A transient potassium conductance regulates the excitability of cultured hippocampal and spinal neurons, J. Neurosci. 4:604–609.PubMedGoogle Scholar
  50. Sturtevant, A. H., and Beadle, G. W., 1939, An Introduction to Genetics, W. B. Saunders, Philadelphia.Google Scholar
  51. Tanouye, M. A., and Wyman, R. J., 1980, Motor outputs of the giant nerve fiber in Drosophila, J. Neurophysiol. 44:405–421.PubMedGoogle Scholar
  52. Tanouye, M. A., and Wyman, R. J., 1981, Inhibition between flight motor neurons in Drosophila, J. Comp. Physiol 144:345–355.CrossRefGoogle Scholar
  53. Tanouye, M. A., Ferrus, A., and Fujita, S. C., 1981, Abnormal action potentials associated with the Shaker complex locus of Drosophila, Proc. Natl. Acad. Sci. U.S.A. 78:6548–6552.PubMedCrossRefGoogle Scholar
  54. Thomas, J. B., and Wyman, R. J., 1982, A mutation in Drosophila alters normal connectivity between two identified neurons, Nature (London) 298:650–651.CrossRefGoogle Scholar
  55. Thomas, J. B., and Wyman, R. J., 1983, Normal and mutant connectivity between identified neurons in Drosophila, Trends Neurosci. 6:214–219.CrossRefGoogle Scholar
  56. Thomas, J. B., and Wyman, R. J., 1984a, Mutations altering synaptic connectivity between identified neurons in Drosophila, J. Neurosci. 4:530–538.PubMedGoogle Scholar
  57. Thomas, J. B., and Wyman, R. J., 1984b, Duplicated neural structure in Bithorax flies, Dev. Biol. 102:531–533.PubMedCrossRefGoogle Scholar
  58. Thomas, J. B., Bastiani, M. J., Bate, M., and Goodman, C. S., 1984, From grasshopper to Drosophila: A common plan for neuronal development, Nature (London) 310:203–207.CrossRefGoogle Scholar
  59. Weisel, T. N., 1982, Postnatal development of the visual cortex and the influence of environment, Nature, (London) 299:583–591.CrossRefGoogle Scholar
  60. Wyman, R., 1965, Probabilistic characterization of simultaneous nerve impulse sequences controlling dipteran flight, Biophys.J. 5:447–471.PubMedCrossRefGoogle Scholar
  61. Wyman, R. J., 1969a, Lateral inhibition in a motor output system. I. Reciprocal inhibition in dipteran flight motor system, J. Neurophysiol. 32:297–306.PubMedGoogle Scholar
  62. Wyman, R. J., 1969b, Lateral inhibition in a motor output system. II. Diverse forms of patterning, J. Neurophysiol. 32:307–314.PubMedGoogle Scholar
  63. Wyman, R. J., and Tanouye, M. A., 1982, Drosophila flight motor pattern: The evidence from interspike intervals, J. Exp. Biol. 96:413–416.Google Scholar
  64. Wyman, R. J., and Thomas, J. B., 1983, What genes are necessary to make an Identified synapse?, Cold Spring Harbor Symp. Quant. Biol. 48:641–652.PubMedCrossRefGoogle Scholar
  65. Wyman, R. J., Thomas, J. B., Salkoff, L., and King, D. G., 1984, The Drosophila giant fiber system, in: Neural Mechanisms of Startle Behavior (R. Eaton, ed.), Plenum Press, New York, pp. 133–161.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Robert J. Wyman
    • 1
  • John B. Thomas
    • 1
  • Lawrence Salkoff
    • 1
  • Walter Costello
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations