Neuropeptide Gene Expression and Behavior in Aplysia

  • Richard H. Scheller
  • Mark Schaefer


The relatively simple nervous system of the marine mollusk Aplysia califomica is especially suitable for examining the molecular and cellular basis of fundamental neural processes common to both invertebrates and vertebrates. The Aplysia nervous system is amenable to this kind of study because it is composed of only some 20, 000 central neurons organized into four easily accessible pairs of symmetrical ganglia and a single asymmetric abdominal ganglion. Extensive physiological studies by previous investigators have helped elucidate how individual neurons interact to achieve the level of sophistication required to coordinate the physiological, behavioral, and learning processes of this organism (reviewed by Kandel, 1979). One common theme emerging from studies of invertebrate nervous systems is the wide diversity of neurons and the precise interconnections they make to provide the neural circuitry necessary to control even relatively simple behavioral components. This diversity is thought to be due to a large extent to differential expression of the structural genes of the nervous system. Indeed, an important question is how only an estimated 10, 000 genes, in the case of Aplysia, can provide the necessary genetic information to give rise to some 20, 000 neurons as well as to the numerous cells composing the other tissues of the organism. In recent years, advances in the field of molecular biology have allowed neurobiologists to approach questions such as this by examining the genetic foundation of neural systems.


Neurosecretory Cell Abdominal Ganglion Pedal Ganglion Amino Acid Glycine Potential Cleavage Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arch, S., 1972, Biosynthesis of the egg laying hormone (ELH) in the bag cell neurons of Aplysia californien, J. Gen. Physiol. 60:102.PubMedCrossRefGoogle Scholar
  2. Aswad, D. W., 1978, Biosynthesis and processing of presumed neurosecretory proteins in single identified neurons of Aplysia californica, J. Neurobiol. 9 (4) :267.PubMedCrossRefGoogle Scholar
  3. Bloom, F. E., 1980, Peptides: Integrators of Cell and Tissue Function. Raven Press, New York.Google Scholar
  4. Brownell, P. H., and Schaefer, M., 1982, Activation of a long lasting motor program by the bag cell neurons in Aplysia, Soc. Neurosci. Abstr. 8:736.Google Scholar
  5. Docherty, K., and Steiner, D. F., 1982, Post-translational proteolysis in polypeptide hormone biosynthesis, Annu. Rev. Physiol. 44:625–638.PubMedCrossRefGoogle Scholar
  6. Dudek, F. E., and Tobe, S. S., 1979, Bag cell peptides act directly on ovotestis of Aplysia californica: Basis for an in vivo bioassay, Gen. Comp. Endocrinol. 36:618.CrossRefGoogle Scholar
  7. Hopkins, W. E., Stone, L. S., Rothman, B. S., Basbaum, A. I., and Mayeri, E., 1982, Egg-laying hormone, leucine-enkephalin and serotonin immunoreactivity in the abdominal ganglion of Aplysia: A light microscopic study, Soc. Neurosci. Abstr. 8:587.Google Scholar
  8. Kaldany, R.-R., Schaefer, M., Evans, C., Mak, G., and Scheller, R. H., 1984, Processing of a neuropeptide precursor in the R3–14 cells of Aplysia, Soc. Neurosci. Abstr. 10:285.Google Scholar
  9. Kandel, E. R., 1979, Behavioral Biology of Aplysia, W. H. Freeman and Co., New York.Google Scholar
  10. Kreiner, T., Rothbard, J., Schoolnick, G. K., and Scheller, R. H., 1984, Antibodies to synthetic peptides defined by cDNA cloning reveal a network of peptidergic neurons in Aplysia, J. Neruosci., 4:2581–2589.Google Scholar
  11. Krieger, D. T., 1983, Brain peptides: What, where, and why? Science 222:975.PubMedCrossRefGoogle Scholar
  12. Kupfermann, I., 1970, Stimulation of egg-laying by extracts of neuroendocrine cells (bag cells) of abdominal ganglion of Aplysia californica, J. Neurophysiol 3:877.Google Scholar
  13. Mackey, S., and Carew, T. J., 1983, Locomotion in Aplysia: Triggering by serotonin and modulation by bag cell extract, J Neurosci. 3(7): 1469.PubMedGoogle Scholar
  14. Mahon, A. C., and Scheller, R. H., 1983, The moleculer basis of a neuroendocrine fixed action pattern: Egg laying in Aplysia, Cold Spring Harbor Symp. Quant. Biol. 48:405–412.CrossRefGoogle Scholar
  15. Mayeri, E., Brownell, P., and Branton, W. D., 1979a, Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. I. Effects of bursting pacemaker neurons, J. Neurophysiol. 42:1165.PubMedGoogle Scholar
  16. Mayeri, E., Brownell, P., and Branton, W. D., 1979b, Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. II. Effects on beating pacemaker and silent neurons, J. Neurophysiol. 42:1185.PubMedGoogle Scholar
  17. McAllister, L. B., Scheller, R. H., Kandel, E. R., and Axel, R., 1983, In situ hybridization to study the origin and fate of identified neurons, Science 222:800.PubMedCrossRefGoogle Scholar
  18. Nambu, J. R., and Scheller, R. H., 1983, Molecular cloning and characterization of neuropeptide genes from identified Aplysia neurons, in: Molecular Approaches to the Nervous System, 1983 Short Course Syllabus, Society for Neuroscience, Bethesda, Maryland, pp. 110–121.Google Scholar
  19. Nambu, J., Taussig, R., Mahon, A. C., and Scheller, R. H., 1983, Gene isolation with cDNA probes from identified Aplysia neurons: Neuropeptide modulators of cardiovascular physiology, Cell 35:47.PubMedCrossRefGoogle Scholar
  20. Price, C. H., and McAdoo, D. J., 1981, Localization of axonally transported 3H-glycine in vesicles of identified neurons, Brain Res. 219:307.PubMedCrossRefGoogle Scholar
  21. Price, C. H., McAdoo, D. J., Farr, W., and Okuda, R., 1979, Bidirectional axonal transport of free glycine in identified neurons R3-R14 of Aplysia, J. Neurobiol. 10:551.PubMedCrossRefGoogle Scholar
  22. Price, C. H., Ruane, S. E., and Carraway, R. E., 1983, Neurotensin-like peptides in the brain and gut of Aplysia: Studies on biological and chemical properties, in: Molluscan Neuroendocrinology. Proceedings of the International Minisymposium on Molluscan Endocrinology (J. Lever and H. H. Boer, eds.), North-Holland Publishing Co., Amsterdam, pp. 14–20.Google Scholar
  23. Rothman, B. S., Weir, G., and Dudek, R. E. 1983a, Egg laying hormone: Direct action on the ovotestis of Aplysia, Gen. Comp. Endocrinol. 52:134.PubMedCrossRefGoogle Scholar
  24. Rothman, B. S., Mayeri, E., Brown, R. O., Yuan, P.-M., and Shively, J., 1983b, Primary structure and neuronal effects of α-bag cell peptide, a second candidate neurotransmitter encoded by a single gene in bag cell neurons of Aplysia, Proc. Natl. Acad. Sci. U.S.A. 80:5753.PubMedCrossRefGoogle Scholar
  25. Schaefer, M., and Brownell, P., 1984, Modulation of a respiratory motor program by peptide-secreting neurons in Aplysia, J. Neurobiol. (In Press).Google Scholar
  26. Schaefer, M. Shirk, P. D., Roth, D. R., and Brownell, P. H., 1984, Activity-related changes in protein phosphorylation in an identified Aplysia neuron (submitted).Google Scholar
  27. Scheller, R. H., Jackson, J. F., McAllister, L. B., Schwartz, J. H., Kandel, E. R., and Axel, R., 1982, A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behavior in Aplysia, Cell 28:707.PubMedCrossRefGoogle Scholar
  28. Scheller, R. H., Jackson, J. F., McAllister, L. B., Rothman, B. S., Mayeri, E., and Axel, R., 1983a, A single gene encodes multiple neuropeptides mediating a stereotyped behavior, Cell 32:7.PubMedCrossRefGoogle Scholar
  29. Scheller, R. H., Rothman, B. S., and Mayeri, R., 1983b, A single gene encodes multiple peptide transmitter candidates involved in a stereotyped behavior, Trends Neurosci. 6 (8) :340.CrossRefGoogle Scholar
  30. Scheller, R. H., Kaldany, R.-R., Kreiner, T., Mahon, A. C., Nambu, J. R., Schaefer, M., and Taussig, R., 1984, Neuropeptides: Mediators of Behavior in Aplysia, Sci. 225:1300–1308.CrossRefGoogle Scholar
  31. Taussig, R., Picciotto, M. R., and Scheller, R. H., 1984a, Two introns define functional domains in an Aplysia neuropeptide precursor, in: Molecular Biology of Development, Vol. 19 (E. H. Davidson and R. L Firtel, eds.), Liss, New York, pp. 551–560.Google Scholar
  32. Taussig, R., Kaldany, R.-R., and Scheller, R.H., 1984b, A cDNA clone encoding neuropeptides isolated from Aplysia neuron L11. Proc. Natl. Acad. Sci. U.S.A. 81:4988–4992.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Richard H. Scheller
    • 1
  • Mark Schaefer
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations