Synaptic Facilitation and Residual Calcium

  • Robert S. Zucker


The synapse is the point of contact between a neuron and its target organ—a muscle, a gland, or another neuron. It is the point of intercellular communication, of transfer of information within the nervous system.


Calcium Influx Transmitter Release Residual Calcium Synaptic Facilitation Frog Neuromuscular Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwood, H. L., Swenarchuk, L. E., and Gruenwald, C. R., 1975, Long-term synaptic facilitation during sodium accumulation in nerve terminals, Brain Res. 100:198–204.PubMedCrossRefGoogle Scholar
  2. Bittner, G. D., and Baxter, D. A., 1983, Intracellular recordings from synaptic terminals during facilitation of transmitter release, Soc. Neurosci. Abstr. 9:883.Google Scholar
  3. Castellucci, V. F., and Kandel, E. R., 1974, A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia, Proc. Natl. Acad. Sci. U.S.A. 71:5004–5008.PubMedCrossRefGoogle Scholar
  4. Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E. R., 1970, Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia, Science 167:1745–1748.PubMedCrossRefGoogle Scholar
  5. Charlton, M. P., and Atwood, H. L., 1977, Modulation of transmitter release by intracellular sodium in squid giant synapse, Brain Res. 134:367–371.PubMedCrossRefGoogle Scholar
  6. Charlton, M. P., and Bittner, G. D., 1978a, Facilitation of transmitter release at squid synapses, J. Gen. Physiol. 72:471–486.PubMedCrossRefGoogle Scholar
  7. Charlton, M. P., and Bittner, G. D., 1978b, Presynaptic potentials and facilitation of transmitter release in the squid giant synapse, J. Gen. Physiol. 72:487–511.PubMedCrossRefGoogle Scholar
  8. Charlton, M. P., Smith, S. J., and Zucker, R. S., 1982, Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse, J. Physiol. (London) 323:173–193.Google Scholar
  9. Dudel, J., 1981, The effect of reduced calcium on quantal unit current and release at the crayfish neuromuscular junction, Pflug. Arch. 391:35–40.CrossRefGoogle Scholar
  10. Katz, B., and Miledi, R., 1965, The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. London Ser. B 161:496–503.CrossRefGoogle Scholar
  11. Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, J. Physiol. (London) 195:481–492.Google Scholar
  12. Liley, A. W., and North, K. A. K., 1953, An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction, J. Neurophysiol. 16:509–527.PubMedGoogle Scholar
  13. Llinäs, R., Sugimori, M., and Simon, S. M., 1982, Transmission by presynaptic spike-like depolarization in the squid giant synapse, Proc. Natl. Acad. Sci. U.S.A. 79:2415–2419.PubMedCrossRefGoogle Scholar
  14. Magleby, K. L., and Zengel, J. E., 1982, A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction, J. Gen. Physiol. 80:613–638.PubMedCrossRefGoogle Scholar
  15. Rahamimoff, R., Lev-Tov, A., and Meiri, H., 1980, Primary and secondary regulation of quantal transmitter release: Calcium and sodium, J. Exp. Biol. 89:5–18.PubMedGoogle Scholar
  16. Smith, S. J., and Zucker, R. S., 1980, Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones, J. Physiol. (London) 300:167–196.Google Scholar
  17. Zucker, R. S., 1972, Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation, J. Neurophysiol. 35:621–637.PubMedGoogle Scholar
  18. Zucker, R. S., 1973, Changes in the statistics of transmitter release during facilitation, J. Physiol. (London) 229:787–810.Google Scholar
  19. Zucker, R. S., 1974a, Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses, J. Physiol. (London) 241:69–89.Google Scholar
  20. Zucker, R. S., 1974b, Excitability changes in crayfish motor neurone terminals, J. Physiol. (London) 241:111–126.Google Scholar
  21. Zucker, R. S., 1982, Processes underlying one form of synaptic plasticity: Facilitation, in: Conditioning: Representation of Involved Neural Functions (C. D. Woody, ed.), Plenum Press, New York, pp. 249–264.Google Scholar
  22. Zucker, R. S., 1984, A calcium diffusion model predicts facilitation, but not the time course of transmitter release, during tetanic stimulation, Biophys. J. 45:264a.Google Scholar
  23. Zucker, R. S., and Bruner, J., 1977, Long-lasting depression and the depletion hypothesis at crayfish neuromuscular junctions, J. Comp. Physio. 121:223–240.CrossRefGoogle Scholar
  24. Zucker, R. S., and Lara-Estrella, L. O., 1979, Is synaptic facilitation caused by presynaptic spike broadening? Nature (London) 278:57–59.CrossRefGoogle Scholar
  25. Zucker, R. S., and Lara-Estrella, L. O., 1983, Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions, J Gen. Physiol. 81:355–372.PubMedCrossRefGoogle Scholar
  26. Zucker, R. S., and Stockbridge, N., 1983, Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse, J. Neurosci. 3:1263–1269.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Robert S. Zucker
    • 1
  1. 1.Department of Physiology-AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations