Electrical Behavioral Correlates of Calcium and Potassium Currents in Molluscan Nerve Cells

  • Maurice Gola


When the original report by Hodgkin and Huxley was published in 1952, the two-channel model of nerve excitability derived from the squid giant axon was expected to explain the electrical properties of many nerve cells as well as those of their respective axons, cell bodies, dendrites, and terminals. During the past 15 years, this model has been superseded by the discovery of several voltage-gated ionic conductances, particularly for potassium and calcium.


Outward Current Test Pulse Helix Pomatia Conditioning Pulse Interpulse Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, N., Lee, K. S., and Brown, A. M., 1978. The calcium current in Helix neurons, J. Gen. Physiol. 71:509–531.PubMedCrossRefGoogle Scholar
  2. Aldricht, R. W., Getting, P. A., and Thomson S. H., 1979, Mechanism of frequency dependent broadening of molluscan neurone soma spike, J. Physiol. 291:531–544.Google Scholar
  3. Barret, E. F., Barret, J. N., and Crill, W. E., 1980, Voltage sensitive outward-currents in cat motoneu-rones, J. Physiol. 304:251–276.Google Scholar
  4. Belmonte, C., and Gallego, R., 1983, Membrane properties of cat sensory neurones with chemoreceptor and baroreceptor endings, J. Physiol. 342:603–614.PubMedGoogle Scholar
  5. Brehm, P., and Eckert, R., 1978, Calcium entry leads to inactivation of calcium channel in Paramecium, Science 202:1203–1206.PubMedCrossRefGoogle Scholar
  6. Connor, J. A., 1975, Neural repetitive firing. A comparative study of membrane properties of crustacean walking leg axons, J. Neurophysiol. 38:922–932.PubMedGoogle Scholar
  7. Connor, J. A., 1977, Time course separation of two inward currents in molluscan neurons, Brain Res. 119:487–492.PubMedCrossRefGoogle Scholar
  8. Connor, J. A., and Stevens, C. F., 1971, Voltage clamp studies of a transient outward membrane current in gastropod neural somata, J. Physiol. 213:21–30.PubMedGoogle Scholar
  9. Dickinson, P. S., and Nagy, F., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones, J. Exp. Biol. 105:59–82.PubMedGoogle Scholar
  10. Eckert, R., and Lux, H. D., 1977, Calcium-dependent depression of a late outward current in snail neurones, Science 197:472–475.PubMedCrossRefGoogle Scholar
  11. Eckert, R., and Tillotson, D., 1978, Potassium activation associated with intraneutronal free calcium, Science 200:437–439.PubMedCrossRefGoogle Scholar
  12. Gorke, K., and Pierau, F. K., 1980, Spike potentials and membrane properties of dorsal root ganglion cells in pigeons, Pflug. Arch. 386:21–28.CrossRefGoogle Scholar
  13. Gorman, A. L. F., and Hermann, A., 1979, Internal effects of divalent cations on potassium permeability in molluscan neurones, J. Physiol. 296:393–410.PubMedGoogle Scholar
  14. Hagiwara, S., 1973, Calcium spikes, Adv. Biophys. 4:71–102.PubMedGoogle Scholar
  15. Heyer, C. B., and Lux, H. D., 1976, Control of the delayed outward potassium currents in bursting pace-maker neurons of Helix pomatia, J. Physiol. 262:349–382.PubMedGoogle Scholar
  16. Heyer, C. B., and Lux, H. D., 1978, Unusual properties of the Ca-K system responsible for prolonged action potentials in neurons from the snail Helix pomatia, in: Abnormal Neuronal Discharges (N. Chalazonitis and M. Boisson, eds.), Raven Press, New York, pp. 311–327.Google Scholar
  17. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117:500–544.PubMedGoogle Scholar
  18. Hofmeier, G., and Lux, H. D., 1978, Inversely related behaviour of potassium and calcium permeability during activation of calcium-dependent outward currents in voltage-clamped snail neurons, J. Physiol. 287:28–29P.Google Scholar
  19. Hofmeier, G., and Lux, H. D., 1981, The time course of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia, Pflug. Arch. 391:242–251.CrossRefGoogle Scholar
  20. Hotson, J. R., and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43:409–419.PubMedGoogle Scholar
  21. Junge, D., and Miller, J., 1974, Different spike mechanisms in axon and soma of molluscan neurons, Nature (London) 252:155–156.CrossRefGoogle Scholar
  22. Kits, K. S., and Bos, N. P. A., 1982, Na+- and Ca++-dependent components in action potentials of the ovulation hormone producing caudo-dorsal cells in Lymnaea stagnalis (Gastropoda), J. Neurobiol. 13:201–216.PubMedCrossRefGoogle Scholar
  23. Kostyuk, P. G., 1981, Calcium channels in the neuronal membrane, Biochim. Biophys. Acta 650:128–150.PubMedCrossRefGoogle Scholar
  24. Kostyuk, P. G., Krishtal, O. A., and Doroshenko, P. A., 1975, Outward current in isolated snail neurones. III. Effect of verapamil, Comp. Biochem. Physiol. 51C:269–274.Google Scholar
  25. Kostyuk, P. G., Doroshenko, P. A., and Tsydrenko, A. Y., 1980, Calcium-dependent potassium conductance studied on internally dialyzed nerve cells, Neuroscience 5:2187–2192.PubMedCrossRefGoogle Scholar
  26. Llinas, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. 305:197–213.PubMedGoogle Scholar
  27. Lux, H. D., and Heyer, C. B., 1979, A new electrogenic calcium-potassium system, in: The Neurosciences Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, pp. 601–615.Google Scholar
  28. Lux, H. D., and Hofmeier, G., 1982a, Properties of a calcium- and voltage-activated potassium current in Helix pomatia neurons, Pflug. Arch. 394:61–69.CrossRefGoogle Scholar
  29. Lux, H. D., and Hofmeier, G., 1982b, Activation characteristics of the calcium-dependent outward potassium current in Helix, Pflug. Arch. 394:70–77.CrossRefGoogle Scholar
  30. Matsuda, Y., Yoshida, S., and Yonezawa, T., 1976, A Ca-dependent regenerative response in rodent dorsal root ganglion cells cultured in vitro, Brain Res. 115:334–338.PubMedCrossRefGoogle Scholar
  31. McAfee, D. A., and Yarowsky, P. J., 1979, Calcium-dependent potentials in the mammalian sympathetic neurons, J. Physiol. 290:507–523.PubMedGoogle Scholar
  32. Meech, R. W., 1974, Prolonged action potentials in Aplysia neurones injected with EGTA, Comp. Biochem. Physiol. 48A:397–402.CrossRefGoogle Scholar
  33. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissue, Annu. Rev. Biophys. Bioeng. 7:1–18.PubMedCrossRefGoogle Scholar
  34. Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurons under voltage clamp: A component mediated by calcium influx, J. Physiol. 249:211–239.PubMedGoogle Scholar
  35. Mironneau, J., and Savineau, J. P., 1980, Effects of calcium ions on outward membrane currents in rat uterine smooth muscle, J. Physiol. 302:411–425.PubMedGoogle Scholar
  36. Partridge, L. D., and Stevens, C. F., 1976, A mechanism for spike frequency adaptation, J. Physiol. 256:315–332.PubMedGoogle Scholar
  37. Stefani, E., and Uchitel, O. D., 1976, Potassium and calcium conductance in slow muscle fibres of the toad, J. Physiol. 255:435–448.PubMedGoogle Scholar
  38. Tachibana, M., 1983, Ionic currents of solitary horizontal cells isolated from goldfish retina, J. Physiol. 345:329–351.PubMedGoogle Scholar
  39. Tazaki, K., and Cooke, I. M., 1979, Ionic bases of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus, J. Neurophysiol. 42:1022–1047.PubMedGoogle Scholar
  40. Theodosis, D. T., Legendre, P., Vincent, J. D., and Cooke, I., 1983, Immunocytochemically identified vasopressin neurons in culture show slow calcium-dependent electrical responses, Science 221:1052–1054.PubMedCrossRefGoogle Scholar
  41. Thomson, S. H., 1977, Three pharmacologically distinct potassium channels in molluscan neurones, J. Physiol. 255:465–488.Google Scholar
  42. Tsien, R. W., 1983, Calcium channels in excitable cell membranes, Annu. Rev. Physiol. 45:341–358.PubMedCrossRefGoogle Scholar
  43. Woolun, J. C., and Gorman, A. L. F., 1981, Time dependence of the calcium-activated potassium current, Biophys. J. 36:297–302.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Maurice Gola
    • 1
  1. 1.Institute of Neurophysiology and PsychophysiologyC.N.R.S.MarseillesFrance

Personalised recommendations