The Well-Modulated Lobster

The Roles of Serotonin, Octopamine, and Proctolin in the Lobster Nervous System
  • Edward A. Kravitz
  • Barbara Beltz
  • Silvio Glusman
  • Michael Goy
  • Ronald Harris-Warrick
  • Michael Johnston
  • Margaret Livingstone
  • Thomas Schwarz
  • Kathleen King Siwicki

Abstract

When serotonin or octopamine are injected into freely moving lobsters, animals assume static poses that last for prolonged periods of time (up to several hours). With serotonin injection, animals stand in a flexed posture high on the tips of their walking legs with their claws spread apart and slightly open in front of them and their abdomens loosely tucked underneath them. With octopamine injection, animals lie close to the substrate in an extended posture with their walking legs and claws pointed forward and lifted off the substrate and their abdomens gently arching upward (Livingstone et al, 1980). Such poses are normally seen in lobster behavior. For example, lobsters assume serotoninlike poses when startled, during agonistic encounters (at the beginning of a “fight” and when a “winner” emerges), and during part of the mating cycle (male only). Animals assume octopaminelike poses during agonistic encounters (the “loser”), during mating (female only), and, in young animals, while “playing-dead” in threatening situations (Scrivener, 1971; Atema and Cobb, 1980).

Keywords

Nerve Root Excitatory Neuron Ventral Nerve Cord Thoracic Ganglion Agonistic Encounter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrowicz, J. S., 1953, Nervous organs in the pericardial cavity of the decapod Crustacea, J. Mar. Biol. Assoc. U.K. 31:563–580.CrossRefGoogle Scholar
  2. Alexandrowicz, J. S., and Carlisle, D. B., 1953, Some experiments on the function of the pericardial organs in Crustacea, J. Mar. Biol. Assoc. U.K. 32:175–192.CrossRefGoogle Scholar
  3. Anderson, W. W., and Barker, D. L., 1977, Activation of a stomatogastric motor pattern generator bydopamine and L-dopa, Soc. Neurosci. Abstr. 3:522.Google Scholar
  4. Atema, J., and Cobb, J. S., 1980, Social behavior of lobsters, in: The Biology and Management of Lobsters, Volume I, (J. S. Cobb and B. F. Phillips, eds), Academic Press, New York, pp. 409–450.CrossRefGoogle Scholar
  5. Barker, D. L., Kushner, P. D., and Hooper, N., 1979, Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system, Brain Res. 161:99–113.PubMedCrossRefGoogle Scholar
  6. Battelle, B. A., and Kravitz, E. A., 1978, Targets of octopamine action in the lobster: Cyclic nucleotide changes and physiological effects in haemolymph, heart and exoskeletal muscle, J. Pharmacol. Exp. Ther. 205:438–448.PubMedGoogle Scholar
  7. Beltz, B. S., and Kravitz, E. A., 1983, Mapping of serotonin-like immunoreactivity in the lobster nervous system, J. Neurosci. 3:585–602.PubMedGoogle Scholar
  8. Berlind, A., 1977, Neurohumoral and reflex control of scaphognathite beating in the crab Carcinus maenus, J. Comp. Physiol. 116:77–90.CrossRefGoogle Scholar
  9. Bishop, C. A., and O’Shea, M., 1982, Neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH): Immunocytochemical mapping of neurons in the central nervous system of the cockroach, J. Comp. Neurol. 207:223–238.PubMedCrossRefGoogle Scholar
  10. Breen, C. A., and Atwood, H. L., 1983, Octopamine—A neurohormone with presynaptic activity dependent effects at crayfish neuromuscular junctions, Nature (London) 303:716–718.CrossRefGoogle Scholar
  11. Brown, B. E., and Starratt, A. N., 1975, Isolation of proctolin, a myotropic peptide, from Periplaneta american, J. Insect. Physiol. 21:1879–1881.CrossRefGoogle Scholar
  12. Cooke, I. M., and Sullivan, R. E., 1982, Hormones and neurosecretion, in: The Biology of Crustacea, Volume 3 (H. L. Atwood, and D. C. Sandeman, eds.), Academic Press, New York, pp. 205–290.CrossRefGoogle Scholar
  13. Dudel, J., 1965, Facilitatory effects of 5-hydroxytryptamine on the crayfish neuromuscular junction, Naunyn-Schmied. Arch. Exp. Pathol. Pharmacol. 249:515–528.Google Scholar
  14. Evans, P. D., 1980, Biogenic amines in the insect nervous system, Adv. Insect. Physiol. 15:317–437.CrossRefGoogle Scholar
  15. Evans, P. D., and O’Shea, M. (1978) The identification of an octopaminergic neuron and the modulation of a myogenic rhythm in the locust. J. Exp. Biol. 73:235–260.PubMedGoogle Scholar
  16. Evans, P. D., Kravitz, E. A., Talamo, B. R., and Wallace, B. G., 1976a, The association of octopamine with specific neurons along lobster nerve trunks, J. Physiol. 262:51–70.PubMedGoogle Scholar
  17. Evans, P. D., Kravitz, E. A., and Talamo, B. R., 1976b, Octopamine release at two points along lobster nerve trunks, J. Physiol. 262:71–89.PubMedGoogle Scholar
  18. Evoy, W. H., and Kennedy, D., 1967, The central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers, J. Exp. Zool. 165:223–238.CrossRefGoogle Scholar
  19. Fischer, L., and Florey, E., 1983, Modulation of synaptic transmission and excitation-contraction coupling in the opener muscle of the crayfish, Astacus leptodactylus, by 5-hydroxytryptamine and octopamine, J. Exp. Biol. 102:187–198.PubMedGoogle Scholar
  20. Florey, E., and Florey, E., 1954, Uber die mogliche Bedeutung von Enteramin (5-oxytryptamin) als nervoser Aktimssubstanz bei cephalopoden und dekapoden crustacean, Z. Naturforsch. 96:58–69.Google Scholar
  21. Florey, E., and Rathmayer, M., 1978, The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: Further evidence for a role as a neurohormone, Comp. Biochem. Physiol. 61C:229–237.Google Scholar
  22. Glusman, S., and Kravitz, E. A., 1982, The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. 325:223–241.PubMedGoogle Scholar
  23. Goy, M. F., Schwarz, T. L., and Kravitz, E. A., 1984, Serotonin-induced protein phosphorylation in a lobster neuromuscular preparation, J. Neurosci. 4:611–626.PubMedGoogle Scholar
  24. Grundfest, H., and Reuben, J. P., 1961, Neuromuscular synaptic activity in lobster, in: Nervous Inhibition (E. Florey, ed.), Pergamon Press, Oxford, pp. 92–104.Google Scholar
  25. Harris-Warrick, R. M., and Kravitz, E. A., 1984, Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster, J. Neurosci. 4:1976–1993.PubMedGoogle Scholar
  26. Kandel, E. R., 1979, Cellular insights into behavior and learning, Harvey Lect. 73:19–92.PubMedGoogle Scholar
  27. Kennedy, M. B., 1977, Amine metabolism: A different pathway in lobsters, Soc. Neurosci. Abstr. 3:252.Google Scholar
  28. Kennedy, M. B., 1978, Products of biogenic amine metabolism in the lobster: Sulfate conjugates, J. Neurochem. 30:315–320.PubMedCrossRefGoogle Scholar
  29. Kingan, T., and Titmus, M., 1983, Radioimmunologic detection of proctolin in Arthropods, Comp. Biochem. Physiol. C 74:75–78.CrossRefGoogle Scholar
  30. Klein, M. E., Shapiro, E., and Kandel, E. R., 1980, Synaptic plasticity and the modulation of the Ca2+ current, J. Exp. Biol. 89:117–157.PubMedGoogle Scholar
  31. Kravitz, E. A., Glusman, S., Harris-Warrick, R. M., Livingstone, M. S., Schwarz, T., and Goy, M. F., 1980, Amines and a peptide as neurohormones in lobsters: Actions on neuromuscular preparations and preliminary behavioral studies, J. Exp. Biol. 89:159–175.PubMedGoogle Scholar
  32. Kravitz, E. A., Glusman, Livingstone, M. S., and Harris-Warrick, R. M., 1981, Serotonin and octopamine in the lobster nervous system: Mechanism of action at neuromuscular junctions and preliminary behavioral studies, in: Serotonin Neurotransmission and Behavior (B. Jacobs and A. Gelperin, eds.), MIT Press, Cambridge, p. 189.Google Scholar
  33. Kravitz, E. A., Beltz, B. S., Glusman, S., Goy, M. F., Harris-Warrick, R. M., Johnston, M. F., Livingstone, M. S., Schwarz, T. L., and Siwicki, K. K., 1983, Neurohormones and lobsters: Biochemistry to behavior, Trends Neurosci. 6:346–349.CrossRefGoogle Scholar
  34. Kristan, W. B., and Nusbaum, M. P., 1982–1983, The dual role of serotonin in leech swimming, J. Physiol. (Paris) 78:743–747.Google Scholar
  35. Livingstone, M. S., Harris-Warrick, R. M., and Kravitz, E. A., 1980, Serotonin and octopamine produce opposite postures in lobsters, Science 208:76–79.PubMedCrossRefGoogle Scholar
  36. Livingstone, M. S., Schaeffer, S. F., and Kravitz, E. A., 1981, Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: Serotonin and octopamine are contained in different nerve endings, J. Neurobiol. 12:27–54.PubMedCrossRefGoogle Scholar
  37. Maynard, D., and Welsh, J. H., 1959, Neurohormones of the pericardial organs of brachyuran Crustacea, J. Physiol 149:215–227.Google Scholar
  38. Nusbaum, M. P., and Kristan, W. B., Jr., 1982, The swim initiating ability of intersegmental serotonin-containing leech interneurons, Soc. Neurosci. Abstr. 8:161.Google Scholar
  39. O’Shea, M., 1982, An identified neuron approach with special reference to proctolin, Trends Neurosci. 5:69–73.CrossRefGoogle Scholar
  40. O’Shea, M., and Bishop, C. A., 1982, Neuropeptide proctolin associated with an identified skeletal motoneuron, J. Neurosci. 2:1242–1251.PubMedGoogle Scholar
  41. Schwarz, T. L., Harris-Warrick, R. M., Glusman, S., and Kravitz, E. A., 1980, A peptide action in a lobster neuromuscular preparation,J. Neurobiol. 11:623–628.CrossRefGoogle Scholar
  42. Schwarz, T. L., Lee, G. M.-H., Siwicki, K.K., Standaert, D. G., and Kravitz, E. A., 1984, Proctolin in the lobster: The distribution, release, and chemical characterization of a likely neurohormone, J. Neurosci. 4:1300–1311.PubMedGoogle Scholar
  43. Scrivener, J. C. A., 1971, Agonistic behavior of the American lobster Homarus americanus (Milne Edwards), Fisheries Research Board of Canada, Technical Report, #235.Google Scholar
  44. Starratt, A. N., and Brown, B. E., 1975, Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects, Life Sci. 17:1253–1256.PubMedCrossRefGoogle Scholar
  45. Sullivan, R. E., 1979, A proctolin-like peptide in crab pericardial organs, J. Exp. Zool. 210:543–552.CrossRefGoogle Scholar
  46. Sullivan, R. E., Friend, B. J., and Barker, D. L., 1977, Structure and function of spiny lobster ligamental nerve plexuses: Evidence for synthesis, storage and secretion of biogenic amines, J. Neurobiol. 8:581–605.PubMedCrossRefGoogle Scholar
  47. Truman, J. W., 1978, Hormonal control of invertebrate behavior, Hormones Behav. 10:214–234.CrossRefGoogle Scholar
  48. Truman, J. W., and Schwartz, L. M., 1980, Peptide hormone regulation of programmed death of neurons and muscle in an insect, in: Peptides: Integrators of Cell and Tissue Function (F. E. Bloom, ed.), Raven Press, New York, pp. 55–67.Google Scholar
  49. Wallace, B. G., 1976, The biosynthesis of octopamine—Characterization of lobster tyramine β-hydroxylase, J. Neurochem. 26:761–770.PubMedCrossRefGoogle Scholar
  50. Willard, A. L., 1981, Effects of serotonin on the generation of the motor program for swimming by the medicinal leech, J. Neurosci. 1:936–944.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Edward A. Kravitz
    • 1
  • Barbara Beltz
    • 1
  • Silvio Glusman
    • 1
  • Michael Goy
    • 1
  • Ronald Harris-Warrick
    • 1
  • Michael Johnston
    • 1
  • Margaret Livingstone
    • 1
  • Thomas Schwarz
    • 1
  • Kathleen King Siwicki
    • 1
  1. 1.Department of NeurobiologyHarvard Medical SchoolBostonUSA

Personalised recommendations